磁共振并行成像方法--从SMASH到GRAPPA(1)

2023-11-28 17:10

本文主要是介绍磁共振并行成像方法--从SMASH到GRAPPA(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Part1:SMASH

基于K空间的磁共振并行成像是利用多通道的相控阵列线圈,采集部分k空间数据结合线圈的敏感度信息,对未采集的K空间数据进行估计,从而组合成全采样的K空间数据。在K空间域的并行重建的典型方法有SMASH、AUTO-SMASH、VD-ATUO-SAMSH 以及目前普遍使用的GRAPPA。
在二维平面中,磁共振信号可以表示为:
S ( k x , k y ) = ∬ C ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y S(k_{x},k_{y})=\iint C(x,y)\rho(x,y)e^{(-ik_{x}x-ik_{y}y)}dxdy S(kx,ky)=C(x,y)ρ(x,y)e(ikxxikyy)dxdy (1)
其中 C ( x , y ) C(x,y) C(x,y)表示感应线圈的敏感度(receiver coil sensitivity), ρ ( x , y ) \rho(x,y) ρ(x,y)表示自旋密度(spin density)。 k x = γ G x t x k_x=\gamma G_xt_x kx=γGxtx k y = γ G y t y k_y=\gamma G_yt_y ky=γGyty γ \gamma γ表示磁旋比(gyromagnetic ratio), G x 和 G y G_x和G_y GxGy表示x和y方向的梯度大小。 t x 和 t y t_x和t_y txty表示对应的作用时间。
那么对于在多线圈的并行成像中,二维平面内的磁共振信号可以表示为:
S l ( k x , k y ) = ∬ C l ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y , l = 1 , 2 , . . . , L S_l(k_{x},k_{y})=\iint C_l(x,y)\rho(x,y)e^{(-ik_{x}x-ik_{y}y)}dxdy ,\ l=1,2,...,L Sl(kx,ky)=Cl(x,y)ρ(x,y)e(ikxxikyy)dxdy, l=1,2,...,L (2)
S l ( k x , k y ) , C l ( x , y ) S_l(k_x,k_y),C_l(x,y) Sl(kx,ky),Cl(x,y)分别表示第 l l l个线圈的K空间数据和线圈敏感度, L L L表示线圈数量。
SMASH的基本概念:通过线圈的敏感度的线性组合可以直接产生缺失的相位编码。ALT幅度萨芬

图1.SMASH线圈敏感度合成

如何理解线圈敏感度的线性组合呢?如图1(a)所示,在一组相控阵列线圈中存在4个子线圈,排列方式如图所示。每个线圈都有相应的线圈敏感度 C l ( x , y ) C_l(x,y) Cl(x,y),其敏感度在相位编码方向的具有正弦分布的曲线。SMASH的思想,可以理解为通过一种线性组合,使得子线圈敏感度 C l ( x , y ) C_l(x,y) Cl(x,y)可以 线性拟合成一些列的复数型复合线圈敏感度 C m c o m p ( x , y ) C_{m}^{comp}(x,y) Cmcomp(x,y),这种复合线圈敏感度曲线也是具有复数型的空间谐波。那么可以用公式描述为:
C m c o m p ( x , y ) = ∑ l = 1 L n l ( m ) C l ( x , y ) C_{m}^{comp}(x,y)=\sum_{l=1}^{L}n_{l}^{(m)}C_l(x,y) Cmcomp(x,y)=l=1Lnl(m)Cl(x,y) (3)
其中,m表示,空间谐波的序数(阶数)。在K空间中, Δ k y \Delta k_y Δky表示相位编码方向的分辨率,对m和 Δ k y \Delta k_y Δky的理解可以参见图2所示, Δ k y = 2 π / F O V \Delta k_y =2\pi/FOV Δky=2π/FOV
在这里插入图片描述
图2.SMASH 采样方式,实线表示实际采样,虚线表示欠采样的k空间数据。

公式(3)展示了不同m序数,对应的复合线圈敏感度。SMASH中认为合成线圈敏感度可以表示为:
C c o m p = c o s Δ k y c o m p + i s i n Δ k y c o m p y = e ( i Δ k y c o m p y ) C^{comp}=cos\Delta k_{y}^{comp} + isin\Delta k_{y}^{comp}y = e^{(i \Delta k^{comp}_{y} y)} Ccomp=cosΔkycomp+isinΔkycompy=e(iΔkycompy (4)
对于不同m阶,由(3)和(4)将产生合成线圈敏感度:
C m c o m p ( x , y ) = ∑ l = 1 L n l ( m ) C l ( x , y ) = e ( i m Δ k y y ) C_{m}^{comp}(x,y)=\sum_{l=1}^{L}n_{l}^{(m)}C_l(x,y)=e^{(im\Delta k_yy)} Cmcomp(x,y)=l=1Lnl(m)Cl(x,y)=e(imΔkyy) (5)
当m=0时, C 0 c o m p ( x , y ) = ∑ l = 1 L n l 0 C l ( x , y ) = 1 C_{0}^{comp}(x,y)=\sum_{l=1}^{L}n_{l}^{0}C_l(x,y)=1 C0comp(x,y)=l=1Lnl0Cl(x,y)=1,如图1(a)中 0阶空间谐波,此时,理想合成的复数线圈敏感度,实数为1,虚数为0。图1(b)展示了8线圈的复合线圈敏感度,当m=0时, C 0 c o m p C_0^{comp} C0comp为常数。图1(b)中也展示了 C m = 1 c o m p C_{m=1}^{comp} Cm=1comp C m = 2 c o m p C_{m=2}^{comp} Cm=2comp的空间谐波合成情况。式(5)中,可以通过最小二乘法拟合求得每个m阶次下的权重系数 n l ( m ) n_l^{(m)} nl(m)
SMASH中认为在K空间复合信号也可以有与线圈敏感度相类似的线性合成:
S m c o m p ( k x , k y ) = ∑ l = 1 L n l ( m ) S l ( k x , k y ) S^{comp}_m(k_x,k_y)=\sum_{l=1}^Ln^{(m)}_lS_l(k_x,k_y) Smcomp(kx,ky)=l=1Lnl(m)Sl(kx,ky)(6)
S m c o m p ( k x , k y ) = ∑ l = 1 L n l ( m ) S l ( k x , k y ) = ∑ l = 1 L n l ( m ) ∬ C l ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ [ ∑ l = 1 L n l ( m ) C l ( x , y ) ] ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ e i m Δ k y y ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ ρ ( x , y ) e ( − i k x x − i ( k y − m Δ k y ) y ) d x d y = S ( k x , k y − m Δ k y ) S^{comp}_m(k_x,k_y)=\sum_{l=1}^Ln^{(m)}_lS_l(k_x,k_y)=\sum_{l=1}^Ln^{(m)}_l\iint C_l(x,y) \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy =\iint \begin{bmatrix} \sum_{l=1}^Ln^{(m)}_lC_l(x,y) \end{bmatrix} \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint e^{im\Delta k_yy} \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint \rho(x,y) e^{(-ik_{x}x-i(k_{y}-m\Delta k_y)y)}dxdy \\ =S(k_x,k_y-m\Delta k_y) Smcomp(kx,ky)=l=1Lnl(m)Sl(kx,ky)=l=1Lnl(m)Cl(x,y)ρ(x,y)e(ikxxikyy)dxdy=[l=1Lnl(m)Cl(x,y)]ρ(x,y)e(ikxxikyy)dxdy=eimΔkyyρ(x,y)e(ikxxikyy)dxdy=ρ(x,y)e(ikxxi(kymΔky)y)dxdy=S(kx,kymΔky)(7)
S m c o m p ( k x , k y ) = ∬ C m c o m p ( x , y ) ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ C 0 c o m p ( x , y ) e i m Δ k y y ρ ( x , y ) e ( − i k x x − i k y y ) d x d y = ∬ C 0 c o m p ( x , y ) ρ ( x , y ) e ( − i k x x − i ( k y − m Δ k y ) y ) d x d y = S 0 c o m p ( k x , k y − m Δ k y ) S^{comp}_m(k_x,k_y)=\iint C_m^{comp}(x,y) \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint C_0^{comp}(x,y) e^{im\Delta k_yy} \rho(x,y) e^{(-ik_{x}x-ik_{y}y)}dxdy \\ =\iint C_0^{comp}(x,y) \rho(x,y) e^{(-ik_{x}x-i(k_{y}-m\Delta k_y)y)}dxdy \\ =S_0^{comp}(k_x,k_y-m\Delta k_y) Smcomp(kx,ky)=Cmcomp(x,y)ρ(x,y)e(ikxxikyy)dxdy=C0comp(x,y)eimΔkyyρ(x,y)e(ikxxikyy)dxdy=C0comp(x,y)ρ(x,y)e(ikxxi(kymΔky)y)dxdy=S0comp(kx,kymΔky)(8)
公式(7)中的 S S S表示理想的相位编码位移函数,即用于填充K相位编码偏移 − m Δ k y -m\Delta k_y mΔky的空间数据。由公式(7),在求得权重系数 n l ( m ) n^{(m)}_l nl(m)的情况下,可以通过已采集的 S l ( k x , k y ) S_l(k_x,k_y) Sl(kx,ky)线性拟合得到。
SMASH的缺点:
SMASH方法依赖于阵列中每个线圈的线圈敏感度的精确估计,才能确定最优的权重系数。而然线圈敏感度的精确估计是非常困难的,甚至不可能得到。

这篇关于磁共振并行成像方法--从SMASH到GRAPPA(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430023

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自