【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL

本文主要是介绍【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 前馈神经网络
    • 数据组织
    • Dataset
    • 网络结构
    • 训练
    • 超参设置
  • RNN
    • 数据组织&Dataset
    • 网络结构
    • 训练
    • 超参设置
  • 注意力网络
    • 数据组织&Dataset
    • 网络结构
      • Attention部分
      • 完整模型
    • 训练部分
    • 超参设置
  • 结果与分析
    • 训练集Loss
    • 测试集PPL

前言

本次实验主要针对前馈神经网络,RNN,以及基于注意力机制的网络学习语言建模任务,并在测试集上计算不同语言模型的PPL

  • PPL计算:我们采用teacher forcing的方式,给定ground truth context,让其预测next token,并将这些token的log probability进行平均,作为文本的PPL
  • CrossEntropyLoss:可以等价于PPL的计算,因此,我们将交叉熵损失作为ppl,具体原理可参考本人博客:如何计算文本的困惑度perplexity(ppl)_ppl计算_长命百岁️的博客-CSDN博客
  • 我们将数据分为训练集和测试集(后1000条)
  • 分词采用bart-base-chinese使用的tokenizer词表大小为21128。当然,也可以利用其他分词工具构建词表
  • 本文仅对重要的实验代码进行说明

前馈神经网络

数据组织

我们利用前馈神经网络,训练一个2-gram语言模型,即每次利用两个token来预测下一个token

def get_n_gram_data(self, data, n):res_data = []res_label = []if len(data) < n:raise VallueError("too short")start_idx = 0while start_idx + n <= len(data):res_data.append(data[start_idx: start_idx + n - 1])res_label.append(data[start_idx + n - 1])start_idx += 1return res_data, res_label
  • 该函数的输入是一个分词后的token_ids列表,输出是将这个ids分成不同的data, label
def get_data(path, n):res_data = []res_label = []tokenizer = BertTokenizer.from_pretrained('/users/nishiyu/ict/Models/bart-base-chinese')with open(path) as file:data = file.readlines()for sample in data:sample_data, sample_label = get_n_gram_data(tokenizer(sample, return_tensors='pt')['input_ids'][0], n)for idx in range(len(sample_data)):res_data.append(sample_data[idx])res_label.append(sample_label[idx])return res_data, res_label
  • 该函数对数据集中的每条数据进行分词,并得到对应的data, label
  • 值得注意的是,这样所有的输入/输出都是等长的,因此可以直接组装成batch

Dataset

class NGramDataset(Dataset):def __init__(self, data_path, window_size=3):self.data, self.label = get_data(data_path, window_size)def __len__(self):return len(self.data)def __getitem__(self, i):return self.data[i], self.label[i]
  • 通过window_size来指定n-gram
  • 每次访问返回datalabel

网络结构

class FeedForwardNNLM(nn.Module):def __init__(self, vocab_size, embedding_dim, window_size, hidden_dim):super(FeedForwardNNLM, self).__init__()self.embeddings = nn.Embedding(vocab_size, embedding_dim)self.e2h = nn.Linear((window_size - 1) * embedding_dim, hidden_dim)self.h2o = nn.Linear(hidden_dim, vocab_size)self.activate = F.reludef forward(self, inputs):embeds = self.embeddings(inputs).reshape([inputs.shape[0], -1])hidden = self.activate(self.e2h(embeds))output = self.h2o(hidden)return output
  • 网络流程:embedding层->全连接层->激活函数->线性层词表映射

训练

class Trainer():def __init__(self, args, embedding_dim, hidden_dim):self.args = argsself.model = FeedForwardNNLM(self.args.vocab_size, embedding_dim, args.window_size, hidden_dim)self.train_dataset = NGramDataset(self.args.train_data, self.args.window_size)self.train_dataloader = DataLoader(self.train_dataset, batch_size=args.batch_size, shuffle=True)self.test_dataset = NGramDataset(self.args.test_data, self.args.window_size)self.test_dataloader = DataLoader(self.test_dataset, batch_size=args.batch_size, shuffle=False)def train(self):self.model.train()device = torch.device('cuda')self.model.to(device)criterion = nn.CrossEntropyLoss()optimizer = Adam(self.model.parameters(), lr=5e-5)for epoch in range(args.epoch):total_loss = 0.0for step, batch in enumerate(self.train_dataloader):input_ids = batch[0].to(device)label_ids = batch[1].to(device)logits = self.model(input_ids)loss = criterion(logits, label_ids)loss.backward()optimizer.step()self.model.zero_grad()total_loss += lossprint(f'epoch: {epoch}, train loss: {total_loss / len(self.train_dataloader)}')self.evaluation()
  • 首先调用datasetdataloader对数据进行组织
  • 然后利用CrossEntropyLossAdam优化器(lr=5e-5)进行训练
  • 评估测试集效果

超参设置

def get_args():parser = argparse.ArgumentParser()# 添加命令行参数parser.add_argument('--vocab_size', type=int, default=21128)parser.add_argument('--train_data', type=str)parser.add_argument('--test_data', type=str)parser.add_argument('--window_size', type=int)parser.add_argument('--epoch', type=int, default=50)parser.add_argument('--batch_size', type=int, default=4096)args = parser.parse_args()return args
  • embedding_dim=128
  • hidden_dim=256
  • epoch = 150

RNN

数据组织&Dataset

RNN的数据组织比较简单,就是每一行作为一个输入就可以,不详细展开

网络结构

class RNNLanguageModel(nn.Module):def __init__(self, args, embedding_dim, hidden_dim):super(RNNLanguageModel, self).__init__()self.args = argsself.embeddings = nn.Embedding(self.args.vocab_size, embedding_dim)self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)self.linear = nn.Linear(hidden_dim, self.args.vocab_size)def forward(self, inputs):embeds = self.embeddings(inputs)output, hidden = self.rnn(embeds)output = self.linear(output)return output
  • 网络流程:embedding->rnn网络->线性层词表映射
  • 这里RNN模型直接调用API

训练

自回归模型的训练是值得注意的

class Trainer():def __init__(self, args, embed_dim, head_dim):self.args = argsself.tokenizer = BertTokenizer.from_pretrained('/users/nishiyu/ict/Models/bart-base-chinese')self.model = RNNLanguageModel(args, embed_dim, head_dim)self.train_dataset = AttenDataset(self.args.train_data)self.train_dataloader = DataLoader(self.train_dataset, batch_size=args.batch_size, shuffle=True)self.test_dataset = AttenDataset(self.args.test_data)self.test_dataloader = DataLoader(self.test_dataset, batch_size=args.batch_size, shuffle=False)def train(self):self.model.to(self.args.device)criterion = nn.CrossEntropyLoss()optimizer = Adam(self.model.parameters(), lr=5e-5)for epoch in range(args.epoch):self.model.train()total_loss = 0.0for step, batch in enumerate(self.train_dataloader):tokens = self.tokenizer(batch, truncation=True, padding=True, max_length=self.args.max_len, return_tensors='pt').to(self.args.device)input_ids = tokens['input_ids'][:, :-1]label_ids = tokens['input_ids'][:, 1:].clone()pad_token_id = self.tokenizer.pad_token_idlabel_ids[label_ids == pad_token_id] = -100 logits = self.model(input_ids)loss = criterion(logits.view(-1, self.args.vocab_size), label_ids.view(-1))loss.backward()optimizer.step()self.model.zero_grad()total_loss += lossprint(f'epoch: {epoch}, train loss: {total_loss / len(self.train_dataloader)}')self.evaluation()
  • 与FFN不同的是,我们在需要数据的时候才进行分词

  • 注意到,数据集中不同数据的长度是不同的,我们想要将这些数据组织成batch,进行并行化训练,需要加padding。在训练过程中我们选择右padding

    input_ids = tokens['input_ids'][:, :-1]
    label_ids = tokens['input_ids'][:, 1:].clone()
    pad_token_id = self.tokenizer.pad_token_id
    label_ids[label_ids == pad_token_id] = -100 
    
    • 这四句是训练的核心代码,决定是否正确,从上往下分别是:
      • 组织输入:因为我们要预测下一个token,因此,输入最多就进行到倒数第二个token,所以不要最后一个
      • 组织label:因为我们要预测下一个token,因此作为label来说,不需要第一个token
      • 组织loss:对于padding部分的token,是不需要计算loss的,因此我们将padding部分对应的label_ids设置为-100,这是因为,损失函数默认id为-100的token为pad部分,不进行loss计算

超参设置

  • embedding_dim=512
  • hidden_dim=128
  • epoch=30
  • batch_size=12

注意力网络

数据组织&Dataset

与RNN完全相同,不进行介绍

网络结构

因为此网络比较重要,我之前也BART, GPT-2等模型的源码,因此我们选择自己写一个一层的decoder-only模型

  • 我们主要实现了自注意力机制
  • dropoutlayerNorm,残差链接等操作并没有关注

Attention部分

class SelfAttention(nn.Module):def __init__(self,args,embed_dim: int,num_heads: int,bias = True):super(SelfAttention, self).__init__()self.args = argsself.embed_dim = embed_dimself.num_heads = num_headsself.head_dim = embed_dim // num_headsself.scaling = self.head_dim**-0.5self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()def forward(self, hidden_states: torch.Tensor):"""Input shape: Batch x seq_len x dim"""bsz, tgt_len, _ = hidden_states.size()# get query projquery_states = self.q_proj(hidden_states) * self.scaling# self_attentionkey_states = self._shape(self.k_proj(hidden_states), -1, bsz) # bsz, heads, seq_len, dimvalue_states = self._shape(self.v_proj(hidden_states), -1, bsz)proj_shape = (bsz * self.num_heads, -1, self.head_dim)query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) # bsz_heads, seq_len, dimkey_states = key_states.reshape(*proj_shape)value_states = value_states.reshape(*proj_shape)attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bsz*head_num, tgt_len, src_lensrc_len = key_states.size(1)# causal_maskmask_value = torch.finfo(attn_weights.dtype).minmatrix = torch.ones(bsz * self.num_heads, src_len, tgt_len).to(self.args.device)causal_mask = torch.triu(matrix, diagonal=1)causal_weights = torch.where(causal_mask.byte(), mask_value, causal_mask.double())attn_weights += causal_weights# do not need attn_maskattn_probs = nn.functional.softmax(attn_weights, dim=-1)# get outputattn_output = torch.bmm(attn_probs, value_states)attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)attn_output = attn_output.transpose(1, 2)attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)attn_output = self.out_proj(attn_output)return attn_output
  • 首先我们定义了embed_dim, 多少个头,以及K,Q,V的映射矩阵
  • forward函数的输入是一个batch的embedding,流程如下
    • 将输入分别映射为K, Q, V, 并将尺寸转换为多头的形式,shape(bsz*num_heads, seq_len, dim)
    • 进行casual mask
      • 首先定义一个当前数据个数下的最小值,当一个数加上这个值再进行softmax,概率基本为0
      • 根据K, Q, V,得到一个分数矩阵attn_weights
      • 然后定义一个大小为bsz * self.num_heads, src_len, tgt_len的全1矩阵
      • 将该矩阵变成一个上三角矩阵,其中为1的地方,代表着当前位置需要进行mask,其他位置都是0
      • 对于矩阵中为1的地方,我们用定义的最小值来替换、
      • 将分数矩阵与mask矩阵相加,就实现了一个causal 分数矩阵
      • 然后进行softmax,通过V得到目标向量
    • 为什么没有对padding进行mask
      • 因为不需要,我们进行的是右padding,所以causal mask已经对后面的padding进行了mask
      • 另外,当真正的输入输出算完后,对于后面padding位置对应的输出,是不统计loss的,因此padding没有影响

完整模型

class AttentionModel(nn.Module):def __init__(self, args, embed_dim, head_num):super(AttentionModel, self).__init__()self.args = argsself.embeddings = nn.Embedding(self.args.vocab_size, embed_dim)self.p_embeddings = nn.Embedding(self.args.max_len, embed_dim)self.attention = SelfAttention(self.args, embed_dim, head_num)self.output = nn.Linear(embed_dim, self.args.vocab_size)def forward(self, input_ids, attn_mask):embeddings = self.embeddings(input_ids)position_embeddings = self.p_embeddings(torch.arange(0, input_ids.shape[1], device=self.args.device))embeddings = embeddings + position_embeddingsoutput = self.attention(embeddings, attn_mask)logits = self.output(output)return logits
  • 我们不仅做了embedding,还实现了position embedding

训练部分

训练阶段与RNN一直,也是组织输入,输出,以及loss

超参设置

  • embed_dim=512
  • num_head=8
  • epoch=30
  • batch_size=12

结果与分析

训练集Loss

  • FFN loss(最小值4.332110404968262)

    在这里插入图片描述

  • RNN loss(最小值4.00740385055542)

    在这里插入图片描述

  • Attention loss(最小值3.7037367820739746)

    在这里插入图片描述

测试集PPL

  • FFN(最小值4.401318073272705)

    在这里插入图片描述

  • RNN(最小值4.0991902351379395)

    在这里插入图片描述

  • Attention(最小值3.9784348011016846)

    在这里插入图片描述

从结果来看,无论是train loss, 还是test ppl,均有FFN>RNN>Attention的关系,且我们看到后两个模型还未完全收敛,性能仍有上升空间。

  • 尽管FFN的任务更简单,其性能仍最差,这是因为其模型结构过于简单
  • RNN与Attention任务一致,但性能更差
  • Attention性能最好,这些观察均符合基本认识

代码可见:ShiyuNee/Train-A-Language-Model-based-on-FFN-RNN-Attention (github.com)

这篇关于【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428190

相关文章

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase