【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL

本文主要是介绍【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 前馈神经网络
    • 数据组织
    • Dataset
    • 网络结构
    • 训练
    • 超参设置
  • RNN
    • 数据组织&Dataset
    • 网络结构
    • 训练
    • 超参设置
  • 注意力网络
    • 数据组织&Dataset
    • 网络结构
      • Attention部分
      • 完整模型
    • 训练部分
    • 超参设置
  • 结果与分析
    • 训练集Loss
    • 测试集PPL

前言

本次实验主要针对前馈神经网络,RNN,以及基于注意力机制的网络学习语言建模任务,并在测试集上计算不同语言模型的PPL

  • PPL计算:我们采用teacher forcing的方式,给定ground truth context,让其预测next token,并将这些token的log probability进行平均,作为文本的PPL
  • CrossEntropyLoss:可以等价于PPL的计算,因此,我们将交叉熵损失作为ppl,具体原理可参考本人博客:如何计算文本的困惑度perplexity(ppl)_ppl计算_长命百岁️的博客-CSDN博客
  • 我们将数据分为训练集和测试集(后1000条)
  • 分词采用bart-base-chinese使用的tokenizer词表大小为21128。当然,也可以利用其他分词工具构建词表
  • 本文仅对重要的实验代码进行说明

前馈神经网络

数据组织

我们利用前馈神经网络,训练一个2-gram语言模型,即每次利用两个token来预测下一个token

def get_n_gram_data(self, data, n):res_data = []res_label = []if len(data) < n:raise VallueError("too short")start_idx = 0while start_idx + n <= len(data):res_data.append(data[start_idx: start_idx + n - 1])res_label.append(data[start_idx + n - 1])start_idx += 1return res_data, res_label
  • 该函数的输入是一个分词后的token_ids列表,输出是将这个ids分成不同的data, label
def get_data(path, n):res_data = []res_label = []tokenizer = BertTokenizer.from_pretrained('/users/nishiyu/ict/Models/bart-base-chinese')with open(path) as file:data = file.readlines()for sample in data:sample_data, sample_label = get_n_gram_data(tokenizer(sample, return_tensors='pt')['input_ids'][0], n)for idx in range(len(sample_data)):res_data.append(sample_data[idx])res_label.append(sample_label[idx])return res_data, res_label
  • 该函数对数据集中的每条数据进行分词,并得到对应的data, label
  • 值得注意的是,这样所有的输入/输出都是等长的,因此可以直接组装成batch

Dataset

class NGramDataset(Dataset):def __init__(self, data_path, window_size=3):self.data, self.label = get_data(data_path, window_size)def __len__(self):return len(self.data)def __getitem__(self, i):return self.data[i], self.label[i]
  • 通过window_size来指定n-gram
  • 每次访问返回datalabel

网络结构

class FeedForwardNNLM(nn.Module):def __init__(self, vocab_size, embedding_dim, window_size, hidden_dim):super(FeedForwardNNLM, self).__init__()self.embeddings = nn.Embedding(vocab_size, embedding_dim)self.e2h = nn.Linear((window_size - 1) * embedding_dim, hidden_dim)self.h2o = nn.Linear(hidden_dim, vocab_size)self.activate = F.reludef forward(self, inputs):embeds = self.embeddings(inputs).reshape([inputs.shape[0], -1])hidden = self.activate(self.e2h(embeds))output = self.h2o(hidden)return output
  • 网络流程:embedding层->全连接层->激活函数->线性层词表映射

训练

class Trainer():def __init__(self, args, embedding_dim, hidden_dim):self.args = argsself.model = FeedForwardNNLM(self.args.vocab_size, embedding_dim, args.window_size, hidden_dim)self.train_dataset = NGramDataset(self.args.train_data, self.args.window_size)self.train_dataloader = DataLoader(self.train_dataset, batch_size=args.batch_size, shuffle=True)self.test_dataset = NGramDataset(self.args.test_data, self.args.window_size)self.test_dataloader = DataLoader(self.test_dataset, batch_size=args.batch_size, shuffle=False)def train(self):self.model.train()device = torch.device('cuda')self.model.to(device)criterion = nn.CrossEntropyLoss()optimizer = Adam(self.model.parameters(), lr=5e-5)for epoch in range(args.epoch):total_loss = 0.0for step, batch in enumerate(self.train_dataloader):input_ids = batch[0].to(device)label_ids = batch[1].to(device)logits = self.model(input_ids)loss = criterion(logits, label_ids)loss.backward()optimizer.step()self.model.zero_grad()total_loss += lossprint(f'epoch: {epoch}, train loss: {total_loss / len(self.train_dataloader)}')self.evaluation()
  • 首先调用datasetdataloader对数据进行组织
  • 然后利用CrossEntropyLossAdam优化器(lr=5e-5)进行训练
  • 评估测试集效果

超参设置

def get_args():parser = argparse.ArgumentParser()# 添加命令行参数parser.add_argument('--vocab_size', type=int, default=21128)parser.add_argument('--train_data', type=str)parser.add_argument('--test_data', type=str)parser.add_argument('--window_size', type=int)parser.add_argument('--epoch', type=int, default=50)parser.add_argument('--batch_size', type=int, default=4096)args = parser.parse_args()return args
  • embedding_dim=128
  • hidden_dim=256
  • epoch = 150

RNN

数据组织&Dataset

RNN的数据组织比较简单,就是每一行作为一个输入就可以,不详细展开

网络结构

class RNNLanguageModel(nn.Module):def __init__(self, args, embedding_dim, hidden_dim):super(RNNLanguageModel, self).__init__()self.args = argsself.embeddings = nn.Embedding(self.args.vocab_size, embedding_dim)self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)self.linear = nn.Linear(hidden_dim, self.args.vocab_size)def forward(self, inputs):embeds = self.embeddings(inputs)output, hidden = self.rnn(embeds)output = self.linear(output)return output
  • 网络流程:embedding->rnn网络->线性层词表映射
  • 这里RNN模型直接调用API

训练

自回归模型的训练是值得注意的

class Trainer():def __init__(self, args, embed_dim, head_dim):self.args = argsself.tokenizer = BertTokenizer.from_pretrained('/users/nishiyu/ict/Models/bart-base-chinese')self.model = RNNLanguageModel(args, embed_dim, head_dim)self.train_dataset = AttenDataset(self.args.train_data)self.train_dataloader = DataLoader(self.train_dataset, batch_size=args.batch_size, shuffle=True)self.test_dataset = AttenDataset(self.args.test_data)self.test_dataloader = DataLoader(self.test_dataset, batch_size=args.batch_size, shuffle=False)def train(self):self.model.to(self.args.device)criterion = nn.CrossEntropyLoss()optimizer = Adam(self.model.parameters(), lr=5e-5)for epoch in range(args.epoch):self.model.train()total_loss = 0.0for step, batch in enumerate(self.train_dataloader):tokens = self.tokenizer(batch, truncation=True, padding=True, max_length=self.args.max_len, return_tensors='pt').to(self.args.device)input_ids = tokens['input_ids'][:, :-1]label_ids = tokens['input_ids'][:, 1:].clone()pad_token_id = self.tokenizer.pad_token_idlabel_ids[label_ids == pad_token_id] = -100 logits = self.model(input_ids)loss = criterion(logits.view(-1, self.args.vocab_size), label_ids.view(-1))loss.backward()optimizer.step()self.model.zero_grad()total_loss += lossprint(f'epoch: {epoch}, train loss: {total_loss / len(self.train_dataloader)}')self.evaluation()
  • 与FFN不同的是,我们在需要数据的时候才进行分词

  • 注意到,数据集中不同数据的长度是不同的,我们想要将这些数据组织成batch,进行并行化训练,需要加padding。在训练过程中我们选择右padding

    input_ids = tokens['input_ids'][:, :-1]
    label_ids = tokens['input_ids'][:, 1:].clone()
    pad_token_id = self.tokenizer.pad_token_id
    label_ids[label_ids == pad_token_id] = -100 
    
    • 这四句是训练的核心代码,决定是否正确,从上往下分别是:
      • 组织输入:因为我们要预测下一个token,因此,输入最多就进行到倒数第二个token,所以不要最后一个
      • 组织label:因为我们要预测下一个token,因此作为label来说,不需要第一个token
      • 组织loss:对于padding部分的token,是不需要计算loss的,因此我们将padding部分对应的label_ids设置为-100,这是因为,损失函数默认id为-100的token为pad部分,不进行loss计算

超参设置

  • embedding_dim=512
  • hidden_dim=128
  • epoch=30
  • batch_size=12

注意力网络

数据组织&Dataset

与RNN完全相同,不进行介绍

网络结构

因为此网络比较重要,我之前也BART, GPT-2等模型的源码,因此我们选择自己写一个一层的decoder-only模型

  • 我们主要实现了自注意力机制
  • dropoutlayerNorm,残差链接等操作并没有关注

Attention部分

class SelfAttention(nn.Module):def __init__(self,args,embed_dim: int,num_heads: int,bias = True):super(SelfAttention, self).__init__()self.args = argsself.embed_dim = embed_dimself.num_heads = num_headsself.head_dim = embed_dim // num_headsself.scaling = self.head_dim**-0.5self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()def forward(self, hidden_states: torch.Tensor):"""Input shape: Batch x seq_len x dim"""bsz, tgt_len, _ = hidden_states.size()# get query projquery_states = self.q_proj(hidden_states) * self.scaling# self_attentionkey_states = self._shape(self.k_proj(hidden_states), -1, bsz) # bsz, heads, seq_len, dimvalue_states = self._shape(self.v_proj(hidden_states), -1, bsz)proj_shape = (bsz * self.num_heads, -1, self.head_dim)query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) # bsz_heads, seq_len, dimkey_states = key_states.reshape(*proj_shape)value_states = value_states.reshape(*proj_shape)attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bsz*head_num, tgt_len, src_lensrc_len = key_states.size(1)# causal_maskmask_value = torch.finfo(attn_weights.dtype).minmatrix = torch.ones(bsz * self.num_heads, src_len, tgt_len).to(self.args.device)causal_mask = torch.triu(matrix, diagonal=1)causal_weights = torch.where(causal_mask.byte(), mask_value, causal_mask.double())attn_weights += causal_weights# do not need attn_maskattn_probs = nn.functional.softmax(attn_weights, dim=-1)# get outputattn_output = torch.bmm(attn_probs, value_states)attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)attn_output = attn_output.transpose(1, 2)attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)attn_output = self.out_proj(attn_output)return attn_output
  • 首先我们定义了embed_dim, 多少个头,以及K,Q,V的映射矩阵
  • forward函数的输入是一个batch的embedding,流程如下
    • 将输入分别映射为K, Q, V, 并将尺寸转换为多头的形式,shape(bsz*num_heads, seq_len, dim)
    • 进行casual mask
      • 首先定义一个当前数据个数下的最小值,当一个数加上这个值再进行softmax,概率基本为0
      • 根据K, Q, V,得到一个分数矩阵attn_weights
      • 然后定义一个大小为bsz * self.num_heads, src_len, tgt_len的全1矩阵
      • 将该矩阵变成一个上三角矩阵,其中为1的地方,代表着当前位置需要进行mask,其他位置都是0
      • 对于矩阵中为1的地方,我们用定义的最小值来替换、
      • 将分数矩阵与mask矩阵相加,就实现了一个causal 分数矩阵
      • 然后进行softmax,通过V得到目标向量
    • 为什么没有对padding进行mask
      • 因为不需要,我们进行的是右padding,所以causal mask已经对后面的padding进行了mask
      • 另外,当真正的输入输出算完后,对于后面padding位置对应的输出,是不统计loss的,因此padding没有影响

完整模型

class AttentionModel(nn.Module):def __init__(self, args, embed_dim, head_num):super(AttentionModel, self).__init__()self.args = argsself.embeddings = nn.Embedding(self.args.vocab_size, embed_dim)self.p_embeddings = nn.Embedding(self.args.max_len, embed_dim)self.attention = SelfAttention(self.args, embed_dim, head_num)self.output = nn.Linear(embed_dim, self.args.vocab_size)def forward(self, input_ids, attn_mask):embeddings = self.embeddings(input_ids)position_embeddings = self.p_embeddings(torch.arange(0, input_ids.shape[1], device=self.args.device))embeddings = embeddings + position_embeddingsoutput = self.attention(embeddings, attn_mask)logits = self.output(output)return logits
  • 我们不仅做了embedding,还实现了position embedding

训练部分

训练阶段与RNN一直,也是组织输入,输出,以及loss

超参设置

  • embed_dim=512
  • num_head=8
  • epoch=30
  • batch_size=12

结果与分析

训练集Loss

  • FFN loss(最小值4.332110404968262)

    在这里插入图片描述

  • RNN loss(最小值4.00740385055542)

    在这里插入图片描述

  • Attention loss(最小值3.7037367820739746)

    在这里插入图片描述

测试集PPL

  • FFN(最小值4.401318073272705)

    在这里插入图片描述

  • RNN(最小值4.0991902351379395)

    在这里插入图片描述

  • Attention(最小值3.9784348011016846)

    在这里插入图片描述

从结果来看,无论是train loss, 还是test ppl,均有FFN>RNN>Attention的关系,且我们看到后两个模型还未完全收敛,性能仍有上升空间。

  • 尽管FFN的任务更简单,其性能仍最差,这是因为其模型结构过于简单
  • RNN与Attention任务一致,但性能更差
  • Attention性能最好,这些观察均符合基本认识

代码可见:ShiyuNee/Train-A-Language-Model-based-on-FFN-RNN-Attention (github.com)

这篇关于【UCAS自然语言处理作业二】训练FFN, RNN, Attention机制的语言模型,并计算测试集上的PPL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/428190

相关文章

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class