CNN之猫狗图像分类--加入Dropout和数据增强

2023-11-27 00:50

本文主要是介绍CNN之猫狗图像分类--加入Dropout和数据增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在上一篇https://blog.csdn.net/weixin_40356612/article/details/107636725
文章中是从头开始训练一个猫狗分类模型,出现了过拟合,本节添加Dropout数据增强技术来防止过拟合。

一、在模型中添加Dropout

from keras import layers
from keras import models
from keras import optimizersmodel = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))model.add(layers.Flatten())
model.add(layers.Dropout(0.5))                                 # Dropout层 降低过拟合
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

二、使用数据增强

from keras.preprocessing.image import ImageDataGenerator#  增强训练数据集
train_datagen = ImageDataGenerator(  rescale=1./255,rotation_range=40,                                                                 width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True
)
# 验证集不能增强
test_datagen = ImageDataGenerator(rescale=1./255)   train_generator = train_datagen.flow_from_directory("./dogs_and_cats_small/train",target_size=(150,150),batch_size=32,class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory("./dogs_and_cats_small/validation",target_size=(150, 150),batch_size=32,class_mode='binary'
)

三、训练模型和结果

在原来模型的配置上,将训练次数上升到100个epochs,训练模型。

训练和验证的精度曲线

在这里插入图片描述

训练和验证的损失曲线

在这里插入图片描述

四、结论

使用dropout和数据增强后,模型不再拟合,训练曲线紧跟验证曲线,现在的精度为82%,比未正则化前提高了15%。
可以在此基础上再使用正则化和调节网络参数,精度可达86%
但依靠从头开始训练卷积神经网络,再想提高精度就比较困难,因为可使用的数据太少
要想进一步提高进度,需要使用:预训练的模型

五、参考文献

佛朗索瓦.肖莱著,张亮译. Python深度学习[M]. 人民邮电出版社.2018.8.p111-115.

END

这篇关于CNN之猫狗图像分类--加入Dropout和数据增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426633

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I