【论文02】隐蔽通信中的中继应用《Relaying via Cooperative Jamming in Covert Wireless Communications》

本文主要是介绍【论文02】隐蔽通信中的中继应用《Relaying via Cooperative Jamming in Covert Wireless Communications》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有感而发(胡说八道):隐蔽通信或其他方向就是一个大坑(无贬义),几个大牛学者把论文当锄头,把这坑一点点挖大,挖完觉得差不多了,换一个位置继续挖。但前面的坑还在呀,于是后来人就前赴后继,争先恐后的在坑里站住一个位置,等填完了,上岸了,累了,也就这样了。
调侃几句哈哈,回到这篇论文。本文提到了中继(Relay),中继其实不算一个新概念,在无线通信中就被广泛应用,那么本文将中继引入到隐蔽通信中,结果是怎样的呢?一起来看看把。

论文题目: Relaying via Cooperative Jamming in Covert Wireless Communications
论文链接: [arXiv论文地址] 暂无
        ResearchGate论文地址

目录

    • 0. 中继的一些知识
    • 1. 系统模型
    • 2. 最优检测阈值
    • 3. 中断概率

0. 中继的一些知识

    根据定义,中继的接收端接收源节点发送的无线信号,经过一系列处理后再由中继发送端发送至目的节点,实质上相当于一个“无线收发器”,而中继通信技术,指的是在蜂窝移动网络部署中继节点,来协助基站和用户之间通信的一门技术,与基站本身相比,中继节点有功耗低、易部署、价格低等优点,在很多种不同的环境中应用中继通信技术会产生许多增益。

    中继具有多种协议,根据中继如何处理来自源节点的信号,大致可以分为放大转发(Amplify-and-Forward,AF)和解码转发(Decode-and-Forward ,DF)。本文使用的协议是放大转发协议,指的是使用 AF 协议的中继对来自源节点的发送信号进行量化并采用放大因子进行简单的放大,并且将量化后的信号转发至目的节点,这里的放大因子是和接收功率成反比的。相当于一个简单的模拟变换。

1. 系统模型


  • 图1 具有中继的隐蔽通信系统模型图
  • \newline

        这个模型中,Alice 是信息源,她想给 Bob 发送信息,但是无法直接接收(可能由于两者相距太远,信道强度弱)。中继实际上是一个双工器件,他接收到来自 Alice 的信息后,经过一个放大器直接再转发出去。如果 Alice 没有发送消息,那么中继转发放大的只有噪声,此时中继退化为一个干扰器(Jammer)。Willie 的功能没有变化,即通过接收到的信号功率,来判断 Alice 是否发送了消息。中继接收到的信息可以表示为

    y r ( i ) = h a r P a x a ( i ) + n r ( i ) y_r(i) = h_{ar}\sqrt{P_a}x_a(i) + n_r(i) yr(i)=harPa xa(i)+nr(i)

    经过转发放大后,中继发射的信号表示为

    x r ( i ) = A r y r ( i ) x_r(i) = \sqrt{A_r}y_r(i) xr(i)=Ar yr(i)

    其中 A r A_r Ar 是中继放大系数。

        为了迷惑 Willie,本文假设中继的发射功率服从均匀分布(也有别的论文里假设 Alice 的发射功率服从均匀分布,原理都差不多),虽然 P r P_r Pr 的概率分布是所有用户都知道的,但是每一个间隙里的值对于 Willie 来说是未知的

    f P r ( p ) = { 1 P max ⁡ , if  0 ≤ p ≤ P max ⁡ 0 , otherwise  f_{P_{r}}(p)=\left\{\begin{array}{ll} \frac{1}{P_{\max }}, & \text { if } \quad 0 \leq p \leq P_{\max } \\ 0, & \text { otherwise } \end{array}\right. fPr(p)={Pmax1,0, if 0pPmax otherwise 

    那么 Willie 接收的到信号 y w ( i ) y_w(i) yw(i) 服从以下分布
    { C N ( 0 , ∣ h r w ∣ 2 P r + σ w 2 ) , H 0 C N ( 0 , ∣ h r w ∣ 2 P r + ∣ h a w ∣ 2 P a + σ w 2 ) , H 1 \left\{\begin{array}{ll} \mathcal{C} \mathcal{N}\left(0,\left|h_{r w}\right|^{2} P_{r}+\sigma_{w}^{2}\right), & H_{0} \\ \mathcal{C} \mathcal{N}\left(0,\left|h_{r w}\right|^{2} P_{r}+\left|h_{a w}\right|^{2} P_{a}+\sigma_{w}^{2}\right), & H_{1} \end{array}\right. CN(0,hrw2Pr+σw2),CN(0,hrw2Pr+haw2Pa+σw2),H0H1

    2. 最优检测阈值

        类似的,根据 P F A \mathbb{P}_{FA} PFA P M D \mathbb{P}_{MD} PMD 可以推导出最优阈值,可利用分段函数,把 P F A \mathbb{P}_{FA} PFA P M D \mathbb{P}_{MD} PMD 的值罗列出来,详细可见原文。该阈值下的最小检测错误概率表示为

    P E ∗ = 1 − ∣ h a w ∣ 2 P a ∣ h r w ∣ 2 P m a x \mathbb{P}_E^* = 1- \frac{|h_{aw}|^2P_a}{|h_{rw}|^2 P_{max}} PE=1hrw2Pmaxhaw2Pa

    P E ∗ \mathbb{P}_E^* PE 的值会被 P a P_a Pa P m a x P_{max} Pmax 共同影响,如果 P m a x → ∞ P_{max} \rightarrow \infty Pmax,则 P E ∗ → 1 \mathbb{P}_E^* \rightarrow 1 PE1;如果 P a P_a Pa 的值很小,则 Willie 会很难检测到,但是这会很大程度上限制 Alice 到 Bob 的信息传输速率。因此 P a P_a Pa 的取值需要优化。

        P E ∗ \mathbb{P}_E^* PE 中有两个随机变量 h a w h_{aw} haw h r w h_{rw} hrw,计算其期望,得到 P ˉ E ∗ \bar\mathbb{P}_E^* PˉE,需要满足

    P ˉ E ∗ ≥ 1 − ϵ \bar\mathbb{P}_E^* \ge 1- \epsilon PˉE1ϵ

    3. 中断概率

        首先考虑 Alice 到 Bob 的中断概率,即 δ a b \delta_{ab} δab

    δ a b = P r [ S N R b < 2 R a b − 1 ] = P r [ P r P a ∣ h a r ∣ 2 ∣ h r b ∣ 2 P r ∣ h r b ∣ 2 + P a ∣ h a r ∣ 2 + 1 < 2 R a b − 1 ] = 1 − 2 Δ R B 1 K 1 ( 2 Δ R B 1 ) exp ⁡ ( − Δ R C 1 ) \begin{aligned} \delta_{ab} = &{\rm Pr}[ {\rm SNR}_b < 2^{R_{ab}}-1] \\ = & {\rm Pr} \Big[ \frac{P_{r} P_{a}\left|h_{a r}\right|^{2}\left|h_{r b}\right|^{2}}{P_{r}\left|h_{r b}\right|^{2}+P_{a}\left|h_{a r}\right|^{2}+1} < 2^{R_{ab}}-1 \Big] \\ = & 1-2 \Delta_{R} \sqrt{B_{1}} K_{1}\left(2 \Delta_{R} \sqrt{B_{1}}\right) \exp \left(-\Delta_{R} C_{1}\right) \end{aligned} δab===Pr[SNRb<2Rab1]Pr[Prhrb2+Pahar2+1PrPahar2hrb2<2Rab1]12ΔRB1 K1(2ΔRB1 )exp(ΔRC1)

    其中

    Δ R ≜ 2 R a b − 1 , B 1 ≜ λ a r λ r b P a P r , C 1 ≜ λ a r P a + λ r b P r \Delta_{R} \triangleq 2^{R_{a b}}-1, \quad B_{1} \triangleq \frac{\lambda_{a r} \lambda_{r b}}{P_{a} P_{r}}, \quad C_{1} \triangleq \frac{\lambda_{a r}}{P_{a}}+\frac{\lambda_{r b}}{P_{r}} ΔR2Rab1,B1PaPrλarλrb,C1Paλar+Prλrb

    有效的隐蔽速率可以表示为 R c = R a b ( 1 − δ a b ) R_c = R_{ab}(1- \delta_{ab}) Rc=Rab(1δab),如果想要最大化 R c R_c Rc,则需要最小化 δ a b \delta_{ab} δab,注意到 δ a b \delta_{ab} δab P a P_a Pa 的单调递减函数,因此 P a P_a Pa 应该取最大值。同时 P ˉ E ∗ \bar\mathbb{P}_E^* PˉE P a P_a Pa 的单调递减函数,于是 P ˉ E ∗ = 1 − ϵ \bar\mathbb{P}_E^* = 1- \epsilon PˉE=1ϵ 的解就是 P a P_a Pa 的最优解。

    P a ∗ = λ r w P max ⁡ b ϵ λ a w ( 1 − b ϵ ) . P_{a}^{*}=\frac{\lambda_{r w} P_{\max } b^{\epsilon}}{\lambda_{a w}\left(1-b^{\epsilon}\right)}. Pa=λaw(1bϵ)λrwPmaxbϵ.

这篇关于【论文02】隐蔽通信中的中继应用《Relaying via Cooperative Jamming in Covert Wireless Communications》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_42090358/article/details/108145942
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/422670

相关文章

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件