拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】

本文主要是介绍拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】

 

 

目录

一、写在前面
二、Redisson实现Redis分布式锁的底层原理

        (1)加锁机制

        (2)锁互斥机制

        (3)watch dog自动延期机制

        (4)可重入加锁机制

        (5)锁释放机制

        (6)此种方案Redis分布式锁的缺陷
三、未完待续

 

一、写在前面

 

现在面试,一般都会聊聊分布式系统这块的东西。通常面试官都会从服务框架(Spring Cloud、Dubbo)聊起,一路聊到分布式事务、分布式锁、ZooKeeper等知识。

 

所以咱们这篇文章就来聊聊分布式锁这块知识,具体的来看看Redis分布式锁的实现原理。

 

说实话,如果在公司里落地生产环境用分布式锁的时候,一定是会用开源类库的,比如Redis分布式锁,一般就是用Redisson框架就好了,非常的简便易用。

 

大家如果有兴趣,可以去看看Redisson的官网,看看如何在项目中引入Redisson的依赖,然后基于Redis实现分布式锁的加锁与释放锁。

 

下面给大家看一段简单的使用代码片段,先直观的感受一下:

 

怎么样,上面那段代码,是不是感觉简单的不行!

 

此外,人家还支持redis单实例、redis哨兵、redis cluster、redis master-slave等各种部署架构,都可以给你完美实现。

 

 

、Redisson实现Redis分布式锁的底层原理

 

好的,接下来就通过一张手绘图,给大家说说Redisson这个开源框架对Redis分布式锁的实现原理。

 

 

(1)加锁机制

 

咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。

 

这里注意,仅仅只是选择一台机器!这点很关键!

 

紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:

 

为啥要用lua脚本呢?

因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性

 

那么,这段lua脚本是什么意思呢?

KEYS[1]代表的是你加锁的那个key,比如说:

RLock lock = redisson.getLock("myLock");

这里你自己设置了加锁的那个锁key就是“myLock”。

 

ARGV[1]代表的就是锁key的默认生存时间,默认30秒。

 

ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:

8743c9c0-0795-4907-87fd-6c719a6b4586:1

 

给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。

 

如何加锁呢?很简单,用下面的命令:

hset myLock 

    8743c9c0-0795-4907-87fd-6c719a6b4586:1 1

 

通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:

 

上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。

 

接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。

 

好了,到此为止,ok,加锁完成了。

 

 

(2)锁互斥机制

 

那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?

 

很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。

 

接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。

 

所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩15000毫秒的生存时间。

 

此时客户端2会进入一个while循环,不停的尝试加锁。

 

 

(3)watch dog自动延期机制

 

客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?

 

简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

 

 

(4)可重入加锁机制

 

那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?

 

比如下面这种代码:

 

这时我们来分析一下上面那段lua脚本。

 

第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。

 

第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”

 

此时就会执行可重入加锁的逻辑,他会用:

incrby myLock 

 8743c9c0-0795-4907-87fd-6c71a6b4586:1 1

通过这个命令,对客户端1的加锁次数,累加1。

 

此时myLock数据结构变为下面这样:

 

大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数

 

 

(5)释放锁机制

 

如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。

 

其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。

 

如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:

“del myLock”命令,从redis里删除这个key。

 

然后呢,另外的客户端2就可以尝试完成加锁了。

 

这就是所谓的分布式锁的开源Redisson框架的实现机制。

 

一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。

 

 

(6)上述Redis分布式锁的缺点

 

其实上面那种方案最大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。

 

但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。

 

接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。

 

此时就会导致多个客户端对一个分布式锁完成了加锁。

 

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生

 

所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。

 

 

三、未完待续

 

下一篇文章,给大家分享一下电商系统中,大促销的活动场景下,每秒上千订单的时候如何对Redis分布式锁进行高并发的优化。

 

敬请关注:

《每秒上千订单的高并发场景下如何完成分布式锁的性能优化?》

这篇关于拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422631

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo