Flink最后一站___Flink数据写入Kafka+从Kafka存入Mysql

2023-11-24 09:10

本文主要是介绍Flink最后一站___Flink数据写入Kafka+从Kafka存入Mysql,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好,我是ChinaManor,直译过来就是中国码农的意思,我希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。

在这里插入图片描述

今天为大家带来Flink的一个综合应用案例:Flink数据写入Kafka+从Kafka存入Mysql
在这里插入图片描述
第一部分:写数据到kafka中

 public static void writeToKafka() throws Exception{Properties props = new Properties();props.put("bootstrap.servers", BROKER_LIST);props.put("key.serializer", CONST_SERIALIZER);props.put("value.serializer", CONST_SERIALIZER);KafkaProducer<String, String> producer = new KafkaProducer<>(props);//构建User对象,在name为data后边加个随机数int randomInt = RandomUtils.nextInt(1, 100000);User user = new User();user.setName("data" + randomInt);user.setId(randomInt);//转换成JSONString userJson = JSON.toJSONString(user);//包装成kafka发送的记录ProducerRecord<String, String> record = new ProducerRecord<String, String>(TOPIC_USER, partition,null, userJson);//发送到缓存producer.send(record);System.out.println("向kafka发送数据:" + userJson);//立即发送producer.flush();}

重点:

//发送到缓存producer.send(record);

为了增强代码的Robust,我们将常量单独拎出来:

   //本地的kafka机器列表public static final String BROKER_LIST = "192.168.88.161:9092";//kafka的topicpublic static final String TOPIC_USER = "USER";//kafka的partition分区public static final Integer partition = 0;//序列化的方式public static final String CONST_SERIALIZER = "org.apache.kafka.common.serialization.StringSerializer";//反序列化public static final String CONST_DESERIALIZER = "org.apache.kafka.common.serialization.StringDeserializer";

main方法如下:

public static void main(String[] args) {while(true) {try {//每三秒写一条数据TimeUnit.SECONDS.sleep(3);writeToKafka();} catch (Exception e) {e.printStackTrace();}}}

第二部分:从kafka获取数据

KafkaRickSourceFunction.java

import com.hy.flinktest.entity.User;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;import java.io.IOException;
import java.time.Duration;
import java.util.Collections;
import java.util.List;
import java.util.Properties;@Slf4j
public class KafkaRickSourceFunction extends RichSourceFunction<String>{//kafkaprivate static Properties prop = new Properties();private boolean running = true;//作静态化处理,增强robustprivate static Integer partition = WritedatatoKafka.partition;static {prop.put("bootstrap.servers",WritedatatoKafka.BROKER_LIST);prop.put("zookeeper.connect","192.168.88.161:2181");prop.put("group.id",WritedatatoKafka.TOPIC_USER);prop.put("key.deserializer",WritedatatoKafka.CONST_DESERIALIZER);prop.put("value.deserializer",WritedatatoKafka.CONST_DESERIALIZER);prop.put("auto.offset.reset","latest");prop.put("max.poll.records", "500");prop.put("auto.commit.interval.ms", "1000");}@Overridepublic void run(SourceContext sourceContext) throws Exception {//创建一个消费者客户端实例KafkaConsumer<String,String> kafkaConsumer = new KafkaConsumer<String, String>(prop);//只消费TOPIC_USER 分区TopicPartition topicPartition = new TopicPartition(WritedatatoKafka.TOPIC_USER,partition);long offset =0; //这个初始值应该从zk或其他地方获取offset = placeOffsetToBestPosition(kafkaConsumer, offset, topicPartition);while (running){ConsumerRecords<String, String> records = kafkaConsumer.poll(1000);if(records.isEmpty()){continue;}for (ConsumerRecord<String, String> record : records) {//record.offset();//record.key()String value = record.value();sourceContext.collect(value);}}}

然后 返回最合适的offset
在这里插入图片描述

    /*** 将offset定位到最合适的位置,并返回最合适的offset。* @param kafkaConsumer consumer* @param offset offset* @param topicPartition partition* @return the best offset*/private long placeOffsetToBestPosition(KafkaConsumer<String, String> kafkaConsumer,long offset, TopicPartition topicPartition) {List<TopicPartition> partitions = Collections.singletonList(topicPartition);kafkaConsumer.assign(partitions);long bestOffset = offset;if (offset == 0) {log.info("由于offset为0,重新定位offset到kafka起始位置.");kafkaConsumer.seekToBeginning(partitions);} else if (offset > 0) {kafkaConsumer.seekToBeginning(partitions);long startPosition = kafkaConsumer.position(topicPartition);kafkaConsumer.seekToEnd(partitions);long endPosition = kafkaConsumer.position(topicPartition);if (offset < startPosition) {log.info("由于当前offset({})比kafka的最小offset({})还要小,则定位到kafka的最小offset({})处。",offset, startPosition, startPosition);kafkaConsumer.seekToBeginning(partitions);bestOffset = startPosition;} else if (offset > endPosition) {log.info("由于当前offset({})比kafka的最大offset({})还要大,则定位到kafka的最大offset({})处。",offset, endPosition, endPosition);kafkaConsumer.seekToEnd(partitions);bestOffset = endPosition;} else {kafkaConsumer.seek(topicPartition, offset);}}return bestOffset;}@Overridepublic void cancel() {running = false;}}

第三部分
主类:从kafka读取数据写入mysql

    //1.构建流执行环境 并添加数据源
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> dataStreamSource = env.addSource(new KafkaRickSourceFunction());
    //2.从kafka里读取数据,转换成User对象
 DataStream<User> dataStream = dataStreamSource.map(lines -> JSONObject.parseObject(lines, User.class));
//3.收集5秒钟的总数
dataStream.timeWindowAll(Time.seconds(5L)).apply(new AllWindowFunction<User, List<User>, TimeWindow>() {@Overridepublic void apply(TimeWindow timeWindow, Iterable<User> iterable, Collector<List<User>> out) throws Exception {List<User> users = Lists.newArrayList(iterable);if(users.size() > 0) {System.out.println("5秒内总共收到的条数:" + users.size());out.collect(users);}}})//sink 到数据库.addSink(new MysqlRichSinkFunction());//打印到控制台//.print();

第四部分:
写入到目标数据库sink
MysqlRichSinkFunction.java

@Slf4j
public class MysqlRichSinkFunction extends RichSinkFunction<List<User>> {private Connection connection = null;private PreparedStatement ps = null;@Overridepublic void open(Configuration parameters) throws Exception {// super.open(parameters);log.info("获取数据库连接");connection = DbUtil.getConnection();String sql = "insert into user1(id,name) values (?,?)";ps = connection.prepareStatement(sql);}public void invoke(List<User> users, Context ctx) throws Exception {//获取ReadMysqlResoure发送过来的结果for(User user : users) {ps.setLong(1, user.getId());ps.setString(2, user.getName());ps.addBatch();}//一次性写入int[] count = ps.executeBatch();log.info("成功写入Mysql数量:" + count.length);}@Overridepublic void close() throws Exception {//关闭并释放资源if(connection != null) {connection.close();}if(ps != null) {ps.close();}}}

总结

以上便是Flink数据写入Kafka+从Kafka存入Mysql
如果有帮助,给manor一键三连吧~~

在这里插入图片描述

这篇关于Flink最后一站___Flink数据写入Kafka+从Kafka存入Mysql的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421645

相关文章

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现