paddle2.0高层API实现ResNet50(十二生肖分类实战)

2023-11-23 03:00

本文主要是介绍paddle2.0高层API实现ResNet50(十二生肖分类实战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • paddle2.0高层API实现ResNet50(十二生肖分类实战)
  • ① 问题定义
  • ② 数据准备
    • 2.1 解压缩数据集
    • 2.2 数据标注
    • 2.3 数据集定义
      • 2.3.1 导入相关库
      • 2.3.2 导入数据集的定义实现
      • 2.3.3 实例化数据集类
  • ③ 模型选择和开发
    • 3.1 网络构建
    • 超参数配置
  • ④ 模型训练和优化
    • VisualDL训练过程可视化展示
      • 模型存储
  • ⑤ 模型评估和测试
    • 5.1 批量预测测试
      • 5.1.1 测试数据集
      • 5.1.2 执行预测
  • ⑥ 模型部署
    • MobileNet_V2测试

paddle2.0高层API实现ResNet50(十二生肖分类实战)

『深度学习7日打卡营·快速入门特辑』

零基础解锁深度学习神器飞桨框架高层API,七天时间助你掌握CV、NLP领域最火模型及应用。

  1. 课程地址
    传送门:https://aistudio.baidu.com/aistudio/course/introduce/6771

  2. 目标

  • 掌握深度学习常用模型基础知识
  • 熟练掌握一种国产开源深度学习框架
  • 具备独立完成相关深度学习任务的能力
  • 能用所学为AI加一份年味

① 问题定义

十二生肖分类的本质是图像分类任务,我们采用CNN网络结构进行相关实践。

② 数据准备

2.1 解压缩数据集

我们将网上获取的数据集以压缩包的方式上传到aistudio数据集中,并加载到我们的项目内。

在使用之前我们进行数据集压缩包的一个解压。

!unzip -q -o data/data68755/signs.zip

2.2 数据标注

我们先看一下解压缩后的数据集长成什么样子。

.
├── test
│   ├── dog
│   ├── dragon
│   ├── goat
│   ├── horse
│   ├── monkey
│   ├── ox
│   ├── pig
│   ├── rabbit
│   ├── ratt
│   ├── rooster
│   ├── snake
│   └── tiger
├── train
│   ├── dog
│   ├── dragon
│   ├── goat
│   ├── horse
│   ├── monkey
│   ├── ox
│   ├── pig
│   ├── rabbit
│   ├── ratt
│   ├── rooster
│   ├── snake
│   └── tiger
└── valid├── dog├── dragon├── goat├── horse├── monkey├── ox├── pig├── rabbit├── ratt├── rooster├── snake└── tiger

数据集分为train、valid、test三个文件夹,每个文件夹内包含12个分类文件夹,每个分类文件夹内是具体的样本图片。

我们对这些样本进行一个标注处理,最终生成train.txt/valid.txt/test.txt三个数据标注文件。

# %cd work
!ls
1512224.ipynb  config.py  data	dataset.py  __MACOSX  __pycache__  signs  work
import io
import os
from PIL import Image
from config import get# 数据集根目录
DATA_ROOT = 'signs'# 标签List
LABEL_MAP = get('LABEL_MAP')# 标注生成函数
def generate_annotation(mode):# 建立标注文件with open('{}/{}.txt'.format(DATA_ROOT, mode), 'w') as f:# 对应每个用途的数据文件夹,train/valid/testtrain_dir = '{}/{}'.format(DATA_ROOT, mode)# 遍历文件夹,获取里面的分类文件夹for path in os.listdir(train_dir):# 标签对应的数字索引,实际标注的时候直接使用数字索引label_index = LABEL_MAP.index(path)# 图像样本所在的路径image_path = '{}/{}'.format(train_dir, path)# 遍历所有图像for image in os.listdir(image_path):# 图像完整路径和名称image_file = '{}/{}'.format(image_path, image)try:# 验证图片格式是否okwith open(image_file, 'rb') as f_img:image = Image.open(io.BytesIO(f_img.read()))image.load()if image.mode == 'RGB':f.write('{}\t{}\n'.format(image_file, label_index))except:continuegenerate_annotation('train')  # 生成训练集标注文件
generate_annotation('valid')  # 生成验证集标注文件
generate_annotation('test')   # 生成测试集标注文件

2.3 数据集定义

接下来我们使用标注好的文件进行数据集类的定义,方便后续模型训练使用。

2.3.1 导入相关库

import paddle
import numpy as np
from config import getpaddle.__version__
'2.0.0'

2.3.2 导入数据集的定义实现

我们数据集的代码实现是在dataset.py中。

数据增强data_augumentation为:

            self.transforms = T.Compose([T.RandomResizedCrop(IMAGE_SIZE),    # 随机裁剪大小T.RandomHorizontalFlip(0.5),        # 随机水平翻转T.ToTensor(),                       # 数据的格式转换和标准化 HWC => CHW  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 图像归一化])
from dataset import ZodiacDataset

2.3.3 实例化数据集类

根据所使用的数据集需求实例化数据集类,并查看总样本量。

train_dataset = ZodiacDataset(mode='train')
valid_dataset = ZodiacDataset(mode='valid')print('训练数据集:{}张;验证数据集:{}张'.format(len(train_dataset), len(valid_dataset)))
训练数据集:7096张;验证数据集:639张

③ 模型选择和开发

3.1 网络构建

本次我们使用ResNet50网络来完成我们的案例实践。

1)ResNet系列网络

2)ResNet50结构

3)残差区块

4)ResNet其他版本

# 请补齐模型实例化代码network = paddle.vision.models.resnet50(num_classes=get('num_classes'), pretrained=True)
100%|██████████| 151272/151272 [00:03<00:00, 41104.37it/s]
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.weight. fc.weight receives a shape [2048, 1000], but the expected shape is [2048, 12].warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.bias. fc.bias receives a shape [1000], but the expected shape is [12].warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

模型可视化

model = paddle.Model(network)
model.summary((-1, ) + tuple(get('image_shape')))
-------------------------------------------------------------------------------Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================Conv2D-1        [[1, 3, 224, 224]]   [1, 64, 112, 112]        9,408     BatchNorm2D-1    [[1, 64, 112, 112]]   [1, 64, 112, 112]         256      ReLU-1        [[1, 64, 112, 112]]   [1, 64, 112, 112]          0       MaxPool2D-1     [[1, 64, 112, 112]]    [1, 64, 56, 56]           0       Conv2D-3        [[1, 64, 56, 56]]     [1, 64, 56, 56]         4,096     BatchNorm2D-3     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-2         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-4        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-4     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-5        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-5     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     Conv2D-2        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-2     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     BottleneckBlock-1   [[1, 64, 56, 56]]     [1, 256, 56, 56]          0       Conv2D-6        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     BatchNorm2D-6     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-3         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-7        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-7     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-8        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-8     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     BottleneckBlock-2   [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-9        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     BatchNorm2D-9     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-4         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-10       [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-10     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-11       [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384   

这篇关于paddle2.0高层API实现ResNet50(十二生肖分类实战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414875

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi