paddle2.0高层API实现ResNet50(十二生肖分类实战)

2023-11-23 03:00

本文主要是介绍paddle2.0高层API实现ResNet50(十二生肖分类实战),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • paddle2.0高层API实现ResNet50(十二生肖分类实战)
  • ① 问题定义
  • ② 数据准备
    • 2.1 解压缩数据集
    • 2.2 数据标注
    • 2.3 数据集定义
      • 2.3.1 导入相关库
      • 2.3.2 导入数据集的定义实现
      • 2.3.3 实例化数据集类
  • ③ 模型选择和开发
    • 3.1 网络构建
    • 超参数配置
  • ④ 模型训练和优化
    • VisualDL训练过程可视化展示
      • 模型存储
  • ⑤ 模型评估和测试
    • 5.1 批量预测测试
      • 5.1.1 测试数据集
      • 5.1.2 执行预测
  • ⑥ 模型部署
    • MobileNet_V2测试

paddle2.0高层API实现ResNet50(十二生肖分类实战)

『深度学习7日打卡营·快速入门特辑』

零基础解锁深度学习神器飞桨框架高层API,七天时间助你掌握CV、NLP领域最火模型及应用。

  1. 课程地址
    传送门:https://aistudio.baidu.com/aistudio/course/introduce/6771

  2. 目标

  • 掌握深度学习常用模型基础知识
  • 熟练掌握一种国产开源深度学习框架
  • 具备独立完成相关深度学习任务的能力
  • 能用所学为AI加一份年味

① 问题定义

十二生肖分类的本质是图像分类任务,我们采用CNN网络结构进行相关实践。

② 数据准备

2.1 解压缩数据集

我们将网上获取的数据集以压缩包的方式上传到aistudio数据集中,并加载到我们的项目内。

在使用之前我们进行数据集压缩包的一个解压。

!unzip -q -o data/data68755/signs.zip

2.2 数据标注

我们先看一下解压缩后的数据集长成什么样子。

.
├── test
│   ├── dog
│   ├── dragon
│   ├── goat
│   ├── horse
│   ├── monkey
│   ├── ox
│   ├── pig
│   ├── rabbit
│   ├── ratt
│   ├── rooster
│   ├── snake
│   └── tiger
├── train
│   ├── dog
│   ├── dragon
│   ├── goat
│   ├── horse
│   ├── monkey
│   ├── ox
│   ├── pig
│   ├── rabbit
│   ├── ratt
│   ├── rooster
│   ├── snake
│   └── tiger
└── valid├── dog├── dragon├── goat├── horse├── monkey├── ox├── pig├── rabbit├── ratt├── rooster├── snake└── tiger

数据集分为train、valid、test三个文件夹,每个文件夹内包含12个分类文件夹,每个分类文件夹内是具体的样本图片。

我们对这些样本进行一个标注处理,最终生成train.txt/valid.txt/test.txt三个数据标注文件。

# %cd work
!ls
1512224.ipynb  config.py  data	dataset.py  __MACOSX  __pycache__  signs  work
import io
import os
from PIL import Image
from config import get# 数据集根目录
DATA_ROOT = 'signs'# 标签List
LABEL_MAP = get('LABEL_MAP')# 标注生成函数
def generate_annotation(mode):# 建立标注文件with open('{}/{}.txt'.format(DATA_ROOT, mode), 'w') as f:# 对应每个用途的数据文件夹,train/valid/testtrain_dir = '{}/{}'.format(DATA_ROOT, mode)# 遍历文件夹,获取里面的分类文件夹for path in os.listdir(train_dir):# 标签对应的数字索引,实际标注的时候直接使用数字索引label_index = LABEL_MAP.index(path)# 图像样本所在的路径image_path = '{}/{}'.format(train_dir, path)# 遍历所有图像for image in os.listdir(image_path):# 图像完整路径和名称image_file = '{}/{}'.format(image_path, image)try:# 验证图片格式是否okwith open(image_file, 'rb') as f_img:image = Image.open(io.BytesIO(f_img.read()))image.load()if image.mode == 'RGB':f.write('{}\t{}\n'.format(image_file, label_index))except:continuegenerate_annotation('train')  # 生成训练集标注文件
generate_annotation('valid')  # 生成验证集标注文件
generate_annotation('test')   # 生成测试集标注文件

2.3 数据集定义

接下来我们使用标注好的文件进行数据集类的定义,方便后续模型训练使用。

2.3.1 导入相关库

import paddle
import numpy as np
from config import getpaddle.__version__
'2.0.0'

2.3.2 导入数据集的定义实现

我们数据集的代码实现是在dataset.py中。

数据增强data_augumentation为:

            self.transforms = T.Compose([T.RandomResizedCrop(IMAGE_SIZE),    # 随机裁剪大小T.RandomHorizontalFlip(0.5),        # 随机水平翻转T.ToTensor(),                       # 数据的格式转换和标准化 HWC => CHW  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 图像归一化])
from dataset import ZodiacDataset

2.3.3 实例化数据集类

根据所使用的数据集需求实例化数据集类,并查看总样本量。

train_dataset = ZodiacDataset(mode='train')
valid_dataset = ZodiacDataset(mode='valid')print('训练数据集:{}张;验证数据集:{}张'.format(len(train_dataset), len(valid_dataset)))
训练数据集:7096张;验证数据集:639张

③ 模型选择和开发

3.1 网络构建

本次我们使用ResNet50网络来完成我们的案例实践。

1)ResNet系列网络

2)ResNet50结构

3)残差区块

4)ResNet其他版本

# 请补齐模型实例化代码network = paddle.vision.models.resnet50(num_classes=get('num_classes'), pretrained=True)
100%|██████████| 151272/151272 [00:03<00:00, 41104.37it/s]
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.weight. fc.weight receives a shape [2048, 1000], but the expected shape is [2048, 12].warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.bias. fc.bias receives a shape [1000], but the expected shape is [12].warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

模型可视化

model = paddle.Model(network)
model.summary((-1, ) + tuple(get('image_shape')))
-------------------------------------------------------------------------------Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================Conv2D-1        [[1, 3, 224, 224]]   [1, 64, 112, 112]        9,408     BatchNorm2D-1    [[1, 64, 112, 112]]   [1, 64, 112, 112]         256      ReLU-1        [[1, 64, 112, 112]]   [1, 64, 112, 112]          0       MaxPool2D-1     [[1, 64, 112, 112]]    [1, 64, 56, 56]           0       Conv2D-3        [[1, 64, 56, 56]]     [1, 64, 56, 56]         4,096     BatchNorm2D-3     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-2         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-4        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-4     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-5        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-5     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     Conv2D-2        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-2     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     BottleneckBlock-1   [[1, 64, 56, 56]]     [1, 256, 56, 56]          0       Conv2D-6        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     BatchNorm2D-6     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-3         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-7        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-7     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-8        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     BatchNorm2D-8     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     BottleneckBlock-2   [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-9        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     BatchNorm2D-9     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      ReLU-4         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       Conv2D-10       [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     BatchNorm2D-10     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      Conv2D-11       [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384   

这篇关于paddle2.0高层API实现ResNet50(十二生肖分类实战)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414875

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte