图处理:rigraph实现边介数社区发现算法(GN)

2023-11-23 02:31

本文主要是介绍图处理:rigraph实现边介数社区发现算法(GN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图处理:rigraph实现边介数社区发现算法(GN)


  • 节点介数和边介数
  • rigraph实现
  • 边介数的计算

按照边介数来划分社区是个有趣的话题。根据rigraph可以轻松的实现这一功能,更详细的内容请参考edge.betweenness.community 。

节点介数和边介数

节点介数已在图处理:使用graphstream来计算无向图的介数中心性一文中,有浅显的介绍。就不在这里重复了,而边介数参考betweenness - igraph和edge_betweenness_centrality — NetworkX 。

参考:

[1]. A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001.
[2]. Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.

在节点的最短路径中,边介数是通过边E的总和

cB(e)=s,tVσ(s,t|e)σ(s,t)

其中V是节点的集合, σ(s,t) 是节点(s,t)之间最短路径的个数。 σ(s,t|e) 节点(s,t)之间,通过边e的,最短路径的个数[2]。

rigraph实现

喜欢python的同学可以使用networkx。这里将列出rigraph的实现

> library(igraph)
> g <- graph.formula(0-5,5-4,4-3,3-2,2-1,1-6)
> V(g)
> E(g)
> ecount(g)
> is.weighted(g)
> ebc <- edge.betweenness.community(g)
> library(ape)
> membership(ebc)
0 5 4 3 2 1 6 
1 1 1 2 2 3 3 
> dendPlot(ebc, mode="hclust")

wg_betweenness_communities.png)

边介数的计算

参考:
1. M Newman and M Girvan: Finding and evaluating community structure in networks, Physical Review E 69, 026113 (2004)
2. r - edge betweenness community cut off point - Stack Overflow
3. 汪小帆. 复杂网络理论及其应用[M]. 清华大学出版社, 2006.

边介数的公式[1],初学是有点难于理解。

cB(e)=s,tVσ(s,t|e)σ(s,t)

其实,edge.betweenness.community 是Girvan和Newman(GN)提供算法的一种实现。GN方法就是一种分裂方法。它的基本思想是不断地从网络中移除介数(Betweenness)最大的边。边介数定义为网络中经过每条边的最短路径的数目[3]。

GN算法的基本流程如下:
1. 计算网络中所有边的介数;
2. 找到介数最高的边并将它从网络中移除;
3. 重复步骤2,直到每个节点就是一个退化的社团为止。

下面,将步骤减慢一步一步的分解[2]。

> g <- graph.formula(0-5,5-4,4-3,3-2,2-1,1-6)
> edge.betweenness(g)
[1]  6 10 12 12 10  6
#12最大,去掉4-3这条边
> edge.betweenness(graph.formula(0-5,5-4,3-2,2-1,1-6))
[1] 2 2 3 4 3
#4最大,去掉2-1这条边
> edge.betweenness(graph.formula(0-5,5-4,3-2,1-6))
[1] 2 2 1 1
#2最大,去掉0-5这条边
> edge.betweenness(graph.formula(5-4,3-2,1-6))
[1] 1 1 1
#1最大,去掉5-4这条边
> edge.betweenness(graph.formula(3-2,1-6))
[1] 1 1
#1最大,去掉3-2这条边
> edge.betweenness(graph.formula(1-6))
[1] 1

g-betweenness-cut.png

这篇关于图处理:rigraph实现边介数社区发现算法(GN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414708

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter