图处理:rigraph实现边介数社区发现算法(GN)

2023-11-23 02:31

本文主要是介绍图处理:rigraph实现边介数社区发现算法(GN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图处理:rigraph实现边介数社区发现算法(GN)


  • 节点介数和边介数
  • rigraph实现
  • 边介数的计算

按照边介数来划分社区是个有趣的话题。根据rigraph可以轻松的实现这一功能,更详细的内容请参考edge.betweenness.community 。

节点介数和边介数

节点介数已在图处理:使用graphstream来计算无向图的介数中心性一文中,有浅显的介绍。就不在这里重复了,而边介数参考betweenness - igraph和edge_betweenness_centrality — NetworkX 。

参考:

[1]. A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001.
[2]. Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.

在节点的最短路径中,边介数是通过边E的总和

cB(e)=s,tVσ(s,t|e)σ(s,t)

其中V是节点的集合, σ(s,t) 是节点(s,t)之间最短路径的个数。 σ(s,t|e) 节点(s,t)之间,通过边e的,最短路径的个数[2]。

rigraph实现

喜欢python的同学可以使用networkx。这里将列出rigraph的实现

> library(igraph)
> g <- graph.formula(0-5,5-4,4-3,3-2,2-1,1-6)
> V(g)
> E(g)
> ecount(g)
> is.weighted(g)
> ebc <- edge.betweenness.community(g)
> library(ape)
> membership(ebc)
0 5 4 3 2 1 6 
1 1 1 2 2 3 3 
> dendPlot(ebc, mode="hclust")

wg_betweenness_communities.png)

边介数的计算

参考:
1. M Newman and M Girvan: Finding and evaluating community structure in networks, Physical Review E 69, 026113 (2004)
2. r - edge betweenness community cut off point - Stack Overflow
3. 汪小帆. 复杂网络理论及其应用[M]. 清华大学出版社, 2006.

边介数的公式[1],初学是有点难于理解。

cB(e)=s,tVσ(s,t|e)σ(s,t)

其实,edge.betweenness.community 是Girvan和Newman(GN)提供算法的一种实现。GN方法就是一种分裂方法。它的基本思想是不断地从网络中移除介数(Betweenness)最大的边。边介数定义为网络中经过每条边的最短路径的数目[3]。

GN算法的基本流程如下:
1. 计算网络中所有边的介数;
2. 找到介数最高的边并将它从网络中移除;
3. 重复步骤2,直到每个节点就是一个退化的社团为止。

下面,将步骤减慢一步一步的分解[2]。

> g <- graph.formula(0-5,5-4,4-3,3-2,2-1,1-6)
> edge.betweenness(g)
[1]  6 10 12 12 10  6
#12最大,去掉4-3这条边
> edge.betweenness(graph.formula(0-5,5-4,3-2,2-1,1-6))
[1] 2 2 3 4 3
#4最大,去掉2-1这条边
> edge.betweenness(graph.formula(0-5,5-4,3-2,1-6))
[1] 2 2 1 1
#2最大,去掉0-5这条边
> edge.betweenness(graph.formula(5-4,3-2,1-6))
[1] 1 1 1
#1最大,去掉5-4这条边
> edge.betweenness(graph.formula(3-2,1-6))
[1] 1 1
#1最大,去掉3-2这条边
> edge.betweenness(graph.formula(1-6))
[1] 1

g-betweenness-cut.png

这篇关于图处理:rigraph实现边介数社区发现算法(GN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414707

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函