机器学习算法系列(三)-- 逻辑回归(对数几率回归)

2023-11-22 13:50

本文主要是介绍机器学习算法系列(三)-- 逻辑回归(对数几率回归),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习算法之–对数几率回归(逻辑斯蒂回归)算法

上个算法(算法系列二)介绍了如何使用线性模型进行回归学习,但若要做的是分类任务,则需要找一个单调可微函数将分类任务的真实标记y与线性回归模型的预测值联系起来。

虽然名字叫回归,但其实是分类学习方法

一、算法原理

对于给定的输入实例x,可求出P(Y=0|x)和P(Y=1|x)的条件概率值的大小比较,将实例x分到概率值较大的那一类。

1.1、预测函数

找出一个预测函数模型,输出值在[0,1]之间。接着,再选择一个基准值(例如0.5),若预测值》0.5,则预测为1;否则预测为0;【二分类问题】

我们可选择: g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1作为预测函数。
该函数称为Sigmoid函数,也可称作Logistic函数(名称由来),其图形如下

图中可以看出:

  • z=0:g(z) = 0.5
  • z>0:g(z) > 0.5,当z越来越大时,g(z)无限接近于1。
  • z<0:g(z) < 0.5,当z越来越小时,g(z)无限接近于0。

显然,这正符合我们想要的分类方式。

我们再结合线性回归的预测函数 h θ ( x ) = θ T x h_\theta(x)=\theta^Tx hθ(x)=θTx,则逻辑斯蒂回归算法的预测函数如下: r = h θ ( x ) = g ( z ) = g ( θ T x ) = 1 1 + e − θ T x r=h_\theta(x)=g(z)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} r=hθ(x)=g(z)=g(θTx)=1+eθTx1

此处求解的是在输入x,参数θ的前提下,y=1的概率,用概率论公式可表示为 h θ ( x ) = P ( y = 1 ∣ x , θ ) h_\theta(x)=P(y=1|x,\theta) hθ(x)=P(y=1∣x,θ)
且必有: P ( y = 1 ∣ x , θ ) + P ( y = 0 ∣ x , θ ) = 1 P(y=1|x,\theta)+P(y=0|x,\theta)=1 P(y=1∣x,θ)+P(y=0∣x,θ)=1

r为正例可能性,1-r是其反例可能性,二者比值 r 1 − r \frac{r}{1-r} 1rr称为“几率”,反映了x作为正例的相对可能性,进一步对几率取对数,则得到“对数几率” l n r 1 − r ln\frac{r}{1-r} ln1rr
在二分类中,这是一个非黑即白的世界

实际上,这是在用线性回归模型的预测结果去逼近真是标记的对数几率,因此成为对数几率回归

对于

算法优点:

  • 直接对分类可能性进行建模,无需事先假设数据分布
  • 可得到近似概率预测
  • 求解的目标函数是任意阶可导凸函数,数学性质very good

1.2、参数估计(如何计算θ)

在训练过程中,算法通过最大化似然函数求解θ。具体来说,似然函数表示的是P(Y|X)的条件概率。统计学家通常使用“最大似然估计”方法来进行参数估计。这种方法就是求解参数W,使得模型的似然函数在已知观测数据下最大。
l n P ( y = 1 ∣ x ) 1 − P ( y = 0 ∣ x ) = θ T x = w x ln\frac{P(y=1|x)}{1-P(y=0|x)} = \theta^Tx=wx ln1P(y=0∣x)P(y=1∣x)=θTx=wx

也就是说,在逻辑回归中,输出y=1的对数几率是输入x的线性函数
显然有, P ( y = 1 ∣ x ) = e θ T x 1 + e θ T x P ( y = 0 ∣ x ) = 1 1 + e θ T x P(y=1|x)=\frac{e^{\theta^Tx}}{1+e^{\theta^Tx}}\\P(y=0|x)=\frac{1}{1+e^{\theta^Tx}} P(y=1∣x)=1+eθTxeθTxP(y=0∣x)=1+eθTx1

设: P ( y = 1 ∣ x ) = π ( x ) , P ( y = 0 ∣ x ) = 1 − π ( x ) P(y=1|x)=\pi(x), P(y=0|x)=1-\pi(x) P(y=1∣x)=π(x),P(y=0∣x)=1π(x)
于是可以通过极大似然估计来估计模型参数,似然函数为
∏ i = 1 n [ π ( x i ) ] y i [ 1 − π ( x ) ] 1 − y i \prod_{i=1}^n[\pi(x_i)]^{y^i}[1-\pi(x)]^{1-y^i} i=1n[π(xi)]yi[1π(x)]1yi
对数似然函数为 L ( w ) = ∑ i = 1 n [ y i l o g π ( x i ) + ( 1 − y i ) l o g ( 1 − π ( x ) ) ] L(w)=\sum_{i=1}^n[y_ilog\pi(x_i)+(1-y_i)log(1-\pi(x))] L(w)=i=1n[yilogπ(xi)+(1yi)log(1π(x))]

  • 成本函数(所有样本的成本平均值):- 1 n L ( w ) \frac{1}{n}L(w) n1L(w)

L ( w ) 求极值,便可得到 w 的估计值,问题也就变成了第一对数似然函数为目标的最优化问题 L(w)求极值,便可得到w的估计值,问题也就变成了第一对数似然函数为目标的最优化问题 L(w)求极值,便可得到w的估计值,问题也就变成了第一对数似然函数为目标的最优化问题

二、模型优化

2.1、梯度下降算法、

根据梯度下降算法定义,可以得到
θ j = θ j − α ∂ J ( θ ) ∂ θ j \theta_j=\theta_j-\alpha\frac{\partial J(\theta)}{\partial \theta_j} θj=θjαθjJ(θ)
此处关键是求成本函数的偏导数,最终得到梯度下降算法公式
θ j = θ j − α 1 m ∑ i = 1 m ( ( h ( x i ) − y i ) x j i ) \theta_j= \theta_j-\alpha\frac{1}{m}\sum_{i=1}^m ((h(x^i)-y^i)x_j^i) θj=θjαm1i=1m((h(xi)yi)xji)

注意此处的形式和线性回归算法的参数迭代公式是一样的,但数值计算方法完全不同
逻辑: h θ ( x ) = 1 1 + e − θ T x h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=1+eθTx1
线性: h θ ( x ) = θ T x h_\theta(x)=\theta^Tx hθ(x)=θTx

*除了梯度下降算法之外,还有拟牛顿法等都可以求得其最优解

三、多元分类

逻辑回归可以解决二分类问题,那如果需要分类的超过了两个类别呢?显然也是也以应对的。

假设总共有n+1个类别,y={0,1,2,3,…,n},思路是转化为二元分类

  • 类别一:0,类别二:1~n,分别计算概率;
  • 类别一:1,类别二:0,2~n,再分别计算概率;
  • 类别一:n,类别二:0~n-1,再分别计算概率。

由此可见,总共需要n+1个预测函数,分别计算P(y=0|x,θ),…,P(y=n|x,θ)

  • 最后预测值: p r e d i c t i o n = m a x i ( h θ ( i ) ( x ) ) prediction=max_i(h_\theta^{(i)}(x)) prediction=maxi(hθ(i)(x))

预测出概率最高的哪个类别,就是样本所属类别

四、正则化

  • 采用正则化可以用来解决模型过拟合问题
  • 保留所有的特征,减少特征的权重 θ j \theta_j θj的值,确保所有的特征对预测值都有少量的贡献。
    当每个特征Xi对预测值Y都有少量的贡献时,这样的模型可以良好的工作,这就是正则化的目的。

五、算法实战

Logistic回归算法实战可参考该博客:《机器学习实战》第五章 Python3代码-(亲自修改测试可成功运行)

以上就是关于逻辑回归的分享,若有不妥之处,欢迎各路大佬不吝赐教~

喜欢的伙伴记得点个赞关注一下吧~

这篇关于机器学习算法系列(三)-- 逻辑回归(对数几率回归)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410599

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为