神经网络语言模型(NNLM)

2023-11-22 12:20

本文主要是介绍神经网络语言模型(NNLM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#1. 模型原理
用神经网络来训练语言模型的思想最早由百度 IDL (深度学习研究院)的徐伟提出[1],其中这方面的一个经典模型是NNLM(Nerual Network Language Model),具体内容可参考 Bengio 2003年发表在JMLR上的论文[2]

模型的训练数据是一组词序列$ w_{1 } . . . ... ...w_{T} , , ,w_{t} \in V$。其中 V V V 是所有单词的集合(即词典), V i V_{i} Vi 表示字典中的第 i 个单词。NNLM的目标是训练如下模型:

  • f ( w t , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = p ( w t ∣ w 1 t − 1 ) f(w_{t},w_{t-1},...,w_{t-n+2}, w_{t-n+1})=p(w_{t} | {w_{1}}^{t-1}) f(wt,wt1,...,wtn+2,wtn+1)=p(wtw1t1)

其中 w t w_{t} wt表示词序列中第 t t t 个单词, w 1 t − 1 {w_{1}}^{t-1} w1t1表示从第1个词到第 t t t 个词组成的子序列。模型需要满足的约束条件是:

  • f ( w t , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) > 0 f(w_{t},w_{t-1},...,w_{t-n+2}, w_{t-n+1}) > 0 f(wt,wt1,...,wtn+2,wtn+1)>0

  • ∑ i = 1 ∣ V ∣ f ( i , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = 1 \sum_{i=1}^{|V|}f(i,w_{t-1},...,w_{t-n+2}, w_{t-n+1}) =1 i=1Vf(i,wt1,...,wtn+2,wtn+1)=1

下图展示了模型的总体架构:

图片名称

该模型可分为特征映射计算条件概率分布两部分:

  1. 特征映射:通过映射矩阵 C ∈ R ∣ V ∣ × m C \in R^{|V|×m} CRV×m 将输入的每个词映射为一个特征向量, C ( i ) ∈ R m C(i) \in R^{m} C(i)Rm表示词典中第 i 个词对应的特征向量,其中 m m m 表示特征向量的维度。该过程将通过特征映射得到的 C ( w t − n + 1 ) , . . . , C ( w t − 1 ) C(w_{t-n+1}),...,C(w_{t-1}) C(wtn+1),...,C(wt1) 合并成一个 ( n − 1 ) m (n-1)m (n1)m 维的向量: ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) (C(w_{t-n+1}),...,C(w_{t-1})) (C(wtn+1),...,C(wt1))

  2. 计算条件概率分布:通过一个函数 g g g g g g 是前馈或递归神经网络)将输入的词向量序列 ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) (C(w_{t-n+1}),...,C(w_{t-1})) (C(wtn+1),...,C(wt1)) 转化为一个概率分布 y ∈ R ∣ V ∣ y \in R^{|V|} yRV ,$y $ 中第 i 位表示词序列中第 t 个词是 V i V_{i} Vi 的概率,即:

  • f ( i , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = g ( i , C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) f(i,w_{t-1},...,w_{t-n+2}, w_{t-n+1})= g(i,C(w_{t-n+1}),...,C(w_{t-1})) f(i,wt1,...,wtn+2,wtn+1)=g(i,C(wtn+1),...,C(wt1))

下面重点介绍神经网络的结构,网络输出层采用的是softmax函数,如下式所示:

  • p ( w t ∣ w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = e y w t ∑ i e y i p(w_{t}|w_{t-1},...,w_{t-n+2}, w_{t-n+1}) = \frac{ e^{y_{w_{t}}} }{ \sum_{i}^{ }e^{y_{i}} } p(wtwt1,...,wtn+2,wtn+1)=ieyieywt

其中 y = b + W x + U t a n h ( d + H x ) y = b +Wx + Utanh(d + Hx) y=b+Wx+Utanh(d+Hx),模型的参数 θ = ( b , d , W , U , H , C ) \theta = (b,d,W,U,H,C) θ=(bdWUHC) x = ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) x=(C(w_{t-n+1}),...,C(w_{t-1})) x=(C(wtn+1),...,C(wt1)) 是神经网络的输入。 W ∈ R ∣ V ∣ × ( n − 1 ) m W \in R^{|V|×(n-1)m} WRV×(n1)m是可选参数,如果输入层与输出层没有直接相连(如图中绿色虚线所示),则可令 W = 0 W = 0 W=0 H ∈ R h × ( n − 1 ) m H \in R^{h×(n-1)m} HRh×(n1)m是输入层到隐含层的权重矩阵,其中 h h h表示隐含层神经元的数目。 U ∈ R ∣ V ∣ × h U \in R^{|V|×h} URV×h是隐含层到输出层的权重矩阵。 d ∈ R h d\in R^{h} dRh b ∈ R ∣ V ∣ b \in R^{|V|} bRV分别是隐含层和输出层的偏置参数。

**需要注意的是:**一般的神经网络模型不需要对输入进行训练,而该模型中的输入 x = ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) x=(C(w_{t-n+1}),...,C(w_{t-1})) x=(C(wtn+1),...,C(wt1)) 是词向量,也是需要训练的参数。由此可见模型的权重参数与词向量是同时进行训练,模型训练完成后同时得到网络的权重参数和词向量。

#2. 训练过程
模型的训练目标是最大化以下似然函数:

  • L = 1 T ∑ t l o g f ( w t , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ; θ ) + R ( θ ) L=\frac{1}{T} \sum_{t}^{ } logf(w_{t},w_{t-1},...,w_{t-n+2}, w_{t-n+1}; \theta) + R(\theta) L=T1tlogf(wt,wt1,...,wtn+2,wtn+1;θ)+R(θ) ,其中 θ \theta θ为模型的所有参数, R ( θ ) R(\theta) R(θ)为正则化项

使用梯度下降算法更新参数的过程如下:

  • θ ← θ + ϵ ∂ l o g p ( w t ∣ w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) ∂ θ \theta \leftarrow \theta +\epsilon \frac{\partial logp(w_{t}|w_{t-1},...,w_{t-n+2}, w_{t-n+1}) }{\partial \theta} θθ+ϵθlogp(wtwt1,...,wtn+2,wtn+1) ,其中 $\epsilon $为步长。
    #3. 参考资料
    [1] Can Artificial Neural Networks Learn Language Models?
    [2] A Neural Probabilistic Language Model
    http://blog.sina.com.cn/s/blog_66a6172c0102v1zb.html

这篇关于神经网络语言模型(NNLM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410103

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示