神经网络语言模型(NNLM)

2023-11-22 12:20

本文主要是介绍神经网络语言模型(NNLM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#1. 模型原理
用神经网络来训练语言模型的思想最早由百度 IDL (深度学习研究院)的徐伟提出[1],其中这方面的一个经典模型是NNLM(Nerual Network Language Model),具体内容可参考 Bengio 2003年发表在JMLR上的论文[2]

模型的训练数据是一组词序列$ w_{1 } . . . ... ...w_{T} , , ,w_{t} \in V$。其中 V V V 是所有单词的集合(即词典), V i V_{i} Vi 表示字典中的第 i 个单词。NNLM的目标是训练如下模型:

  • f ( w t , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = p ( w t ∣ w 1 t − 1 ) f(w_{t},w_{t-1},...,w_{t-n+2}, w_{t-n+1})=p(w_{t} | {w_{1}}^{t-1}) f(wt,wt1,...,wtn+2,wtn+1)=p(wtw1t1)

其中 w t w_{t} wt表示词序列中第 t t t 个单词, w 1 t − 1 {w_{1}}^{t-1} w1t1表示从第1个词到第 t t t 个词组成的子序列。模型需要满足的约束条件是:

  • f ( w t , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) > 0 f(w_{t},w_{t-1},...,w_{t-n+2}, w_{t-n+1}) > 0 f(wt,wt1,...,wtn+2,wtn+1)>0

  • ∑ i = 1 ∣ V ∣ f ( i , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = 1 \sum_{i=1}^{|V|}f(i,w_{t-1},...,w_{t-n+2}, w_{t-n+1}) =1 i=1Vf(i,wt1,...,wtn+2,wtn+1)=1

下图展示了模型的总体架构:

图片名称

该模型可分为特征映射计算条件概率分布两部分:

  1. 特征映射:通过映射矩阵 C ∈ R ∣ V ∣ × m C \in R^{|V|×m} CRV×m 将输入的每个词映射为一个特征向量, C ( i ) ∈ R m C(i) \in R^{m} C(i)Rm表示词典中第 i 个词对应的特征向量,其中 m m m 表示特征向量的维度。该过程将通过特征映射得到的 C ( w t − n + 1 ) , . . . , C ( w t − 1 ) C(w_{t-n+1}),...,C(w_{t-1}) C(wtn+1),...,C(wt1) 合并成一个 ( n − 1 ) m (n-1)m (n1)m 维的向量: ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) (C(w_{t-n+1}),...,C(w_{t-1})) (C(wtn+1),...,C(wt1))

  2. 计算条件概率分布:通过一个函数 g g g g g g 是前馈或递归神经网络)将输入的词向量序列 ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) (C(w_{t-n+1}),...,C(w_{t-1})) (C(wtn+1),...,C(wt1)) 转化为一个概率分布 y ∈ R ∣ V ∣ y \in R^{|V|} yRV ,$y $ 中第 i 位表示词序列中第 t 个词是 V i V_{i} Vi 的概率,即:

  • f ( i , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = g ( i , C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) f(i,w_{t-1},...,w_{t-n+2}, w_{t-n+1})= g(i,C(w_{t-n+1}),...,C(w_{t-1})) f(i,wt1,...,wtn+2,wtn+1)=g(i,C(wtn+1),...,C(wt1))

下面重点介绍神经网络的结构,网络输出层采用的是softmax函数,如下式所示:

  • p ( w t ∣ w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) = e y w t ∑ i e y i p(w_{t}|w_{t-1},...,w_{t-n+2}, w_{t-n+1}) = \frac{ e^{y_{w_{t}}} }{ \sum_{i}^{ }e^{y_{i}} } p(wtwt1,...,wtn+2,wtn+1)=ieyieywt

其中 y = b + W x + U t a n h ( d + H x ) y = b +Wx + Utanh(d + Hx) y=b+Wx+Utanh(d+Hx),模型的参数 θ = ( b , d , W , U , H , C ) \theta = (b,d,W,U,H,C) θ=(bdWUHC) x = ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) x=(C(w_{t-n+1}),...,C(w_{t-1})) x=(C(wtn+1),...,C(wt1)) 是神经网络的输入。 W ∈ R ∣ V ∣ × ( n − 1 ) m W \in R^{|V|×(n-1)m} WRV×(n1)m是可选参数,如果输入层与输出层没有直接相连(如图中绿色虚线所示),则可令 W = 0 W = 0 W=0 H ∈ R h × ( n − 1 ) m H \in R^{h×(n-1)m} HRh×(n1)m是输入层到隐含层的权重矩阵,其中 h h h表示隐含层神经元的数目。 U ∈ R ∣ V ∣ × h U \in R^{|V|×h} URV×h是隐含层到输出层的权重矩阵。 d ∈ R h d\in R^{h} dRh b ∈ R ∣ V ∣ b \in R^{|V|} bRV分别是隐含层和输出层的偏置参数。

**需要注意的是:**一般的神经网络模型不需要对输入进行训练,而该模型中的输入 x = ( C ( w t − n + 1 ) , . . . , C ( w t − 1 ) ) x=(C(w_{t-n+1}),...,C(w_{t-1})) x=(C(wtn+1),...,C(wt1)) 是词向量,也是需要训练的参数。由此可见模型的权重参数与词向量是同时进行训练,模型训练完成后同时得到网络的权重参数和词向量。

#2. 训练过程
模型的训练目标是最大化以下似然函数:

  • L = 1 T ∑ t l o g f ( w t , w t − 1 , . . . , w t − n + 2 , w t − n + 1 ; θ ) + R ( θ ) L=\frac{1}{T} \sum_{t}^{ } logf(w_{t},w_{t-1},...,w_{t-n+2}, w_{t-n+1}; \theta) + R(\theta) L=T1tlogf(wt,wt1,...,wtn+2,wtn+1;θ)+R(θ) ,其中 θ \theta θ为模型的所有参数, R ( θ ) R(\theta) R(θ)为正则化项

使用梯度下降算法更新参数的过程如下:

  • θ ← θ + ϵ ∂ l o g p ( w t ∣ w t − 1 , . . . , w t − n + 2 , w t − n + 1 ) ∂ θ \theta \leftarrow \theta +\epsilon \frac{\partial logp(w_{t}|w_{t-1},...,w_{t-n+2}, w_{t-n+1}) }{\partial \theta} θθ+ϵθlogp(wtwt1,...,wtn+2,wtn+1) ,其中 $\epsilon $为步长。
    #3. 参考资料
    [1] Can Artificial Neural Networks Learn Language Models?
    [2] A Neural Probabilistic Language Model
    http://blog.sina.com.cn/s/blog_66a6172c0102v1zb.html

这篇关于神经网络语言模型(NNLM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410103

相关文章

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常