使用Brainwash人头数据集训练SSD_MobilenetV1训练自己的模型

2023-11-22 03:18

本文主要是介绍使用Brainwash人头数据集训练SSD_MobilenetV1训练自己的模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于Brainwash数据集

        Brainwash数据集是一个密集人头检测数据集,拍摄的是在一个咖啡馆里出现的人群,然后对这群人进行标注而得到的数据集。包含三个部分,训练集:10769张图像81975个人头,验证集:500张图像3318个人头。测试集:500张图像5007个人头。
在这里插入图片描述
        对于此数据集,其中brainwash_test.idl、brainwash_train.idl和brainwash_val.idl分别是对应的测试集、训练集和验证集的坐标文本。
在这里插入图片描述
        通过上图可以发现该数据集以及把人头信息标注的很明显,但是在其中不乏有一些没有人头信息的图片 ,所以在尽心数据集操作时要仔细关注它的影响。

Brainwash人头数据集转VOC格式

        对于voc数据集格式,我们可以很清楚的知道里面的逻辑结构,这里我就不详细介绍了,尚未了解的可以参考:VOC数据集格式详解


       但是有一点需要注意的是在进行数据集转换的时候图片谨记需要6位的命名方式
下面进行制作Voc数据集
       首先,进行图片的提取。因为brainwash数据集已将有文本将图片相关坐标信息保存了,而且划分好训练、测试和验证,但是因为在其中有图片没有人头,这里我没有考虑该负样本对最终模型的影响,分别读取brainwash_test.idl、brainwash_train.idl和brainwash_val.idl三个文档,获得有人头坐标信息的图片名字,保存到列表,然后根据列表中的名字信息,经图片分别提取到指定的文件夹。

import os
from PIL import Imageidl_file_dir = "/home/lf/桌面/brainwash/brainwash_val.idl"
imgFile="/home/lf/桌面/train/train3"if not os.path.exists(imgFile):os.mkdir(imgFile)f1=open(idl_file_dir,'r+')
lines=f1.readlines()lst1=[]
lst2=[]
lst3=[]
for i in range(len(lines)):line=lines[i]line = line.replace(":", ";")if line.split(";")[1]!="\n":img_dir=line.split(";")[0]img_dir=img_dir.replace('"',"")dirs=img_dir.split("/")[0]img_name=img_dir.split("/")[1]if dirs=="brainwash_10_27_2014_images":lst1.append(img_name)print(lst1)elif dirs=="brainwash_11_13_2014_images":lst2.append(img_name)else:lst3.append(img_name)
img_dir1="/home/lf/桌面/brainwash/brainwash_10_27_2014_images"
img_dir2="/home/lf/桌面/brainwash/brainwash_11_13_2014_images"
img_dir3="/home/lf/桌面/brainwash/brainwash_11_24_2014_images"# print(lst1)
# for i in lst1:
#     print(i[:-1])
#     im=Image.open("/home/lf/桌面/brainwash/brainwash_10_27_2014_images/{}".format(i))
#     im.save(imgFile+"/{}".format(i))
#     im.close()# for i in lst2:
#     print(i[:-1])
#     im=Image.open("/home/lf/桌面/brainwash/brainwash_11_13_2014_images/{}".format(i))
#     im.save(imgFile+"/{}".format(i))
#     im.close()for i in lst3:print(i[:-1])im=Image.open("/home/lf/桌面/brainwash/brainwash_11_24_2014_images/{}".format(i))im.save(imgFile+"/{}".format(i))im.close()

       然后经获得的图片名分别转成6位的VOC格式,这里因为训练、测试和验证我保存的不是一个文件夹(因为可能有图片名字重复的),所以我先将图片给转成对于格式后,在全部转到一个JPEGImages文件夹下

#将图片转成jpg格式,这里没必要写的,因为在后面改名的时候就直接改成jpg格式了
import glob
import os
import cv2
from PIL import Imageurl = '/home/lf/桌面/img/JPEGImages2'
img_list=os.listdir(url)
print(sorted(img_list))#进行排序好,为后面更改名字作准备#将png格式的图片转换成jpg格式
for name in img_list:prename=name.split(".")[0]src=cv2.imread("/home/lf/桌面/img/JPEGImages2/"+name)cv2.imwrite("/home/lf/桌面/img/jnwe2/"+prename+'.jpg',src)
cv2.waitKey(0)# url2 = '/home/lf/桌面/JPEGImages2'
# img_list2=os.listdir(url2)
# for name in img_list2:
#     print(name)
#     prename=name.split(".")[0]
#     src=cv2.imread("/home/lf/桌面/JPEGImages2/"+name)
#
#     cv2.imwrite("/home/lf/桌面/jnwe2/"+prename+'.jpg',src)
# cv2.waitKey(0)

       因为训练集中的图片都是png格式,所以后续的我都将其转成了jpg格式,但是在测试集中的图片转成jpg格式会无法显示加载,因此数据集总体我就使用了训练集和验证集的图图片。

#将图片转成6位的对应格式
import glob
import os
import cv2
from PIL import Imageurl = '/home/lf/桌面/train/train2'
img_list=os.listdir(url)
img_list=sorted(img_list)#将图片的名字转成符合voc格式的图片
for i in range(len(img_list)):src=os.path.join(os.path.abspath(url),img_list[i])dst=os.path.join(os.path.abspath(url),(str(i+10462).zfill(6)+'.jpg'))os.rename(src,dst)# url2 = '/home/lf/桌面/img/jnwe2'
# img_list2=os.listdir(url2)
# img_list2=sorted(img_list2)
#
# # 将图片的名字转成符合voc格式的图片
# for i in range(len(img_list2)):
#     src=os.path.join(os.path.abspath(url2),img_list2[i])
#     dst=os.path.

这篇关于使用Brainwash人头数据集训练SSD_MobilenetV1训练自己的模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407086

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3