基于非线性最小二乘法 (NLLS) 实现伪距数据的 UAV 轨迹跟踪附matlab代码

本文主要是介绍基于非线性最小二乘法 (NLLS) 实现伪距数据的 UAV 轨迹跟踪附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

This project consists of two primary tasks. The first is to use non-linear least squares (NLLS) analysis to find a UAV trajectory given pseudorange data and validating this result by matching them to the true UAV trajectory (also given). The second is to calculate the dilution of precision (DOP) of the calculated UAV trajectory.

The DOP is a measure of the accuracy of any given GPS position data. Five different types of 1 DOPs will be calculated: Geometric DOP, Position DOP, Horizontal DOP, Vertical DOP and time DOP. They are a function of the variances in x,y,z,t (clock bias) components: Vx , Vy , Vz & Vt .Geometric DOP is the error due to the geometric orientation of the satellites in space. Position DOP is the error in the 3D position of the UAV. Horizontal DOP is the error in the horizontal position of the UAV while Vertical DOP is the error in the altitude of the UAV. Time DOP is the error due to the time accuracy.

The lower the DOP values, the better the instantaneous position measurement of the UAV. A good GDOP or PDOP is considered to be <5 while values >10 for PDOP are very poor. HDOP is expected to be between 2-3. VDOP is expected to be higher than HDOP as a result of all the satellites being above the receiver whereas for the horizontal coordinates, data is received from all sides of the UAV.

GPS Positioning Problem

Suppose a receiver is located on a flat 2D earth. Two GPS satellites can be used to pinpoint its location on earth, provided that if the range of the two satellites is represented by a circle there will be two intersections, of which only one will be located on earth. This is given no range error. Suppose there is a range error in GPS gps satellites, the intersection of the two range circles will now have shifted, resulting in an incorrect position estimation of the receiver on the earth.

This issue can be resolved by having a third GPS satellite resolve the location of the receiver. Provided that all GPS satellites have the same clock/range error, all three range circle will intersect at the receiver position. This can be used to calculate the clock bias, hence the range error. Similarly in 3D space, we need four satellites to pinpoint receiver location.

⛄ 部分代码

% Clear workspace, close all open figure & clear the command windowclear allclose all;clc;% Extract the data from the text file% Add other folders to pathaddpath('../data', '../lib/', '../lib/conversion');% Load constantsconstants();% Initialise Ground Station Position% Defining Sydney Ground Station Coordinateslat        = deg2rad(-34.76);long       = deg2rad(150.03);alt        = 680;pos_llh_gs = [lat;long;alt];% File Nameuav_data_fpath = 'UAVPosition_F1.txt';% Import pseudorange datapseudo_data = importdata('GPS_pseudorange_F1.txt');% Load ECEF position values of satellitesload ECEFPos%% Categorising time values% Vernal Equinox timeequinox_time = 7347737.336;% Store time datatimes     = pseudo_data(:,1) - equinox_time;% Obtain the unique time values% nTimes is an array containing the total number of occurences of single time% value% timeVal is an array containing all unique timevalues[total_occurences time_values] = hist(times(:),unique(times));% Cummulative Time Arraycummulative_times = cumsum(total_occurences);% Increment time values% timeVal = timeVal + 1;%% Observed UAV Positions% Obtain the polar coordinates of UAV w.r.t Ground Station[pos_UAV_Cart_obs,pos_UAV_Pol_Obs, pos_ECEF_gs, UAVVel, UAVPos] = UAVpolarCoor(time_values,...                                         cummulative_times, pseudo_data, ECEFPos, pos_llh_gs);%% Extract true UAV Position data from text files% % Obtain polar coordinates of true measurements[pos_UAV_Pol_True, pos_UAV_Cart_True] = extractUAVtrue(uav_data_fpath,equinox_time);%% Catalog the position of the satellites during UAV Tracking% Find satellite position w.r.t ground station[pos_Sat_Pol_Obs] = findSatPos(ECEFPos, pos_ECEF_gs, pos_llh_gs);%% Calculate the DOP for each time value% Calculate the best and worst satellite configurations according to DOP[bestSatConfig, worstSatConfig, DOP, maxDOPIndex, minDOPIndex] = findDOP(UAVVel, pos_Sat_Pol_Obs);%% Save relevant data as a structured array for plottingplotData.timeArray         = times;plotData.pos_UAV_Cart_obs  = pos_UAV_Cart_obs;plotData.pos_UAV_Pol_Obs   = pos_UAV_Pol_Obs;plotData.pos_ECEF_gs       = pos_ECEF_gs;plotData.UAVVel            = UAVVel;plotData.UAVPos            = UAVPos;plotData.pos_UAV_Pol_True  = pos_UAV_Pol_True;plotData.pos_UAV_Cart_True = pos_UAV_Cart_True;plotData.pos_Sat_Pol_Obs   = pos_Sat_Pol_Obs;plotData.bestSatConfig     = bestSatConfig;plotData.worstSatConfig    = worstSatConfig;plotData.DOP               = DOP;plotData.maxDOPIndex       = maxDOPIndex;plotData.minDOPIndex       = minDOPIndex;plotData.nTimes            = total_occurences;plotData.pseudo_data       = pseudo_data;plotData.cumArray          = cummulative_times;%% Plot graphsplotq1B(plotData)

⛄ 运行结果

⛄ 参考文献

[1] 强明辉,张京娥.基于MATLAB的递推最小二乘法辨识与仿真[J].自动化与仪器仪表, 2008(6):3.DOI:10.3969/j.issn.1001-9227.2008.06.002.

[2] 熊学亮,陈淑娟,汤万龙.应用最小二乘法实现新疆建筑气象参数数据拟合[J].数学学习与研究, 2016(20):2.DOI:CNKI:SUN:SXYG.0.2016-20-130.

[3] 王海鹏,赵莉,王殿生,等.基于MATLAB的均匀设计实验数据多元非线性最小二乘拟合[J].化学工程与装备, 2010(9):4.DOI:10.3969/j.issn.1003-0735.2010.09.011.​

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于基于非线性最小二乘法 (NLLS) 实现伪距数据的 UAV 轨迹跟踪附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/406630

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函