torchaudio - Python wave 读取音频数据对比

2023-11-21 10:50

本文主要是介绍torchaudio - Python wave 读取音频数据对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchaudio - Python wave 读取音频数据对比

1. torchaudio: an audio library for PyTorch

https://github.com/pytorch/audio

Data manipulation and transformation for audio signal processing, powered by PyTorch.

torchaudio: an audio library for PyTorch
https://github.com/pytorch/audio

The following is the corresponding torchaudio versions and supported Python versions.

torchtorchaudiopython
master / nightlymaster / nightly>=3.6
1.5.00.5.0>=3.5
1.4.00.4.0==2.7, >=3.5, <=3.8

2. torchaudio.load(filepath, out=None, normalization=True, channels_first=True, num_frames=0, offset=0, signalinfo=None, encodinginfo=None, filetype=None)

https://pytorch.org/audio/

Loads an audio file from disk into a tensor.
将音频文件从磁盘加载到张量中。

2.1 Parameters

filepath (str or pathlib.Path) – Path to audio file. - 音频文件的路径。

out (torch.Tensor, optional) – An output tensor to use instead of creating one. (Default: None) - 使用输出张量 out 而不是创建一个张量。

normalization (bool, number, or callable, optional) – If boolean True, then output is divided by 1 << 31 (assumes signed 32-bit audio), and normalizes to [-1, 1]. If number, then output is divided by that number. If callable, then the output is passed as a parameter to the given function, then the output is divided by the result. (Default: True)

channels_first (bool) – Set channels first or length first in result. (Default: True) - 返回结果中第一维度是 channels or length。

num_frames (int, optional) – Number of frames to load. 0 to load everything after the offset. (Default: 0) - 要加载的帧数。

offset (int, optional) – Number of frames from the start of the file to begin data loading. (Default: 0) - 从文件开始到开始数据加载的帧数。

signalinfo (sox_signalinfo_t, optional) – A sox_signalinfo_t type, which could be helpful if the audio type cannot be automatically determined. (Default: None) - sox_signalinfo_t 类型,如果不能自动确定音频类型,这可能会有所帮助。

encodinginfo (sox_encodinginfo_t, optional) – A sox_encodinginfo_t type, which could be set if the audio type cannot be automatically determined. (Default: None) - sox_encodinginfo_t 类型,如果不能自动确定音频类型,则可以设置。

filetype (str, optional) – A filetype or extension to be set if sox cannot determine it automatically. (Default: None) - 如果 sox 无法自动确定要设置的文件类型或扩展名。

2.2 Returns

An output tensor of size [C x L] or [L x C] where L is the number of audio frames and C is the number of channels. An integer which is the sample rate of the audio (as listed in the metadata of the file)

2.3 Return type

Tuple[torch.Tensor, int]

2.4 Example

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100Process finished with exit code 0

2.5 data, sample_rate = torchaudio.load(audio_file, normalization=False)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100Process finished with exit code 0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.6 data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100
yongqiang chengProcess finished with exit code 0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3. Python wave 读取音频数据

Python wave 读取音频数据,针对 sample width in bytes = 2 bytes,short / short int 可以表示的的最大范围是 [-32768, 32767],注意查看读取的数据。Python wave 同 torchaudio.load() 读取音频数据表示范围有区别,注意对比。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport wave
import numpy as np
import matplotlib.pyplot as plt# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"
object = wave.open(audio_file, "rb")# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = object.getparams()
nchannels, sampwidth, framerate, nframes, comptype, compname = params[:6]
print("nchannels =", nchannels)
print("sampwidth =", sampwidth)
print("framerate =", framerate)
print("nframes =", nframes)
print("comptype =", comptype)
print("compname =", compname)# Returns number of audio channels (1 for mono, 2 for stereo).
print("object.getnchannels() =", object.getnchannels())# Returns sample width in bytes.
print("object.getsampwidth() =", object.getsampwidth())# Returns sampling frequency.
print("object.getframerate() =", object.getframerate())# Returns number of audio frames.
print("object.getnframes() =", object.getnframes())# Returns compression type ('NONE' is the only supported type).
print("object.getcomptype() =", object.getcomptype())# Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.
print("object.getcompname() =", object.getcompname())# Reads and returns at most n frames of audio, as a bytes object.
str_data = object.readframes(nframes)
# nframes = 17504,  channels = 2, sampwidth = 2
# str_data (bytes: 70016) = nframes * channels * sampwidth = 17504 * 2 * 2 = 70016
num_bytes = len(str_data) # num_bytes = 70016
print("num_bytes =", num_bytes, "bytes")
object.close()wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 2
wave_data = wave_data.T
time = np.arange(0, nframes) * (1.0 / framerate)plt.subplot(211)
plt.plot(time, wave_data[0])
plt.xlabel("left channel - time (seconds)")
plt.subplot(212)
plt.plot(time, wave_data[1], c="g")
plt.xlabel("right channel - time (seconds)")
plt.show()
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
nchannels = 2
sampwidth = 2
framerate = 44100
nframes = 17504
comptype = NONE
compname = not compressed
object.getnchannels() = 2
object.getsampwidth() = 2
object.getframerate() = 44100
object.getnframes() = 17504
object.getcomptype() = NONE
object.getcompname() = not compressed
num_bytes = 70016 bytesProcess finished with exit code 0

在这里插入图片描述
short / short int 可以表示的的最大范围是 [-32768, 32767]
2^15 = 32768
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4. 数据对比

  • torchaudio
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport torchaudio# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"data, sample_rate = torchaudio.load(audio_file, normalization=False)
print("data.size() =", data.size())
print("sample_rate =", sample_rate)data = data.numpy()
print("data[0, 189:205] = ")
print(data[0, 189:205])
print("data[1, 189:205] = ")
print(data[1, 189:205])data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)
print("data_normalized.size() =", data_normalized.size())
print("sample_rate =", sample_rate)data_normalized = data_normalized.numpy()
print("data_normalized[0, 189:205] = ")
print(data_normalized[0, 189:205])
print("data_normalized[1, 189:205] = ")
print(data_normalized[1, 189:205])print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
data.size() = torch.Size([2, 17504])
sample_rate = 44100
data[0, 189:205] = 
[    65536.   -131072.    131072.   -131072.    131072.   -262144.196608.   -327680.    327680.   -524288.    524288.  -1179648.5308416.   8847360.    196608. -19660800.]
data[1, 189:205] = 
[        0.   -131072.     65536.   -131072.    131072.   -131072.262144.   -262144.    262144.   -458752.    458752.  -1048576.4390912.   7602176.    327680. -16777216.]
data_normalized.size() = torch.Size([2, 17504])
sample_rate = 44100
data_normalized[0, 189:205] = 
[ 3.0517578e-05 -6.1035156e-05  6.1035156e-05 -6.1035156e-056.1035156e-05 -1.2207031e-04  9.1552734e-05 -1.5258789e-041.5258789e-04 -2.4414062e-04  2.4414062e-04 -5.4931641e-042.4719238e-03  4.1198730e-03  9.1552734e-05 -9.1552734e-03]
data_normalized[1, 189:205] = 
[ 0.0000000e+00 -6.1035156e-05  3.0517578e-05 -6.1035156e-056.1035156e-05 -6.1035156e-05  1.2207031e-04 -1.2207031e-041.2207031e-04 -2.1362305e-04  2.1362305e-04 -4.8828125e-042.0446777e-03  3.5400391e-03  1.5258789e-04 -7.8125000e-03]
yongqiang chengProcess finished with exit code 0
  • Python wave
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# yongqiang chengfrom __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport wave
import numpy as np
import matplotlib.pyplot as plt# WAV file
audio_file = "/mnt/f/yongqiang_work/ding.wav"
object = wave.open(audio_file, "rb")# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = object.getparams()
nchannels, sampwidth, framerate, nframes, comptype, compname = params[:6]
print("nchannels =", nchannels)
print("sampwidth =", sampwidth)
print("framerate =", framerate)
print("nframes =", nframes)
print("comptype =", comptype)
print("compname =", compname)# Returns number of audio channels (1 for mono, 2 for stereo).
print("object.getnchannels() =", object.getnchannels())# Returns sample width in bytes.
print("object.getsampwidth() =", object.getsampwidth())# Returns sampling frequency.
print("object.getframerate() =", object.getframerate())# Returns number of audio frames.
print("object.getnframes() =", object.getnframes())# Returns compression type ('NONE' is the only supported type).
print("object.getcomptype() =", object.getcomptype())# Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.
print("object.getcompname() =", object.getcompname())# Reads and returns at most n frames of audio, as a bytes object.
str_data = object.readframes(nframes)
# nframes = 17504,  channels = 2, sampwidth = 2
# str_data (bytes: 70016) = nframes * channels * sampwidth = 17504 * 2 * 2 = 70016
num_bytes = len(str_data) # num_bytes = 70016
print("num_bytes =", num_bytes, "bytes")
object.close()wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 2
wave_data = wave_data.T
time = np.arange(0, nframes) * (1.0 / framerate)plt.subplot(211)
plt.plot(time, wave_data[0])
plt.xlabel("left channel - time (seconds)")
plt.subplot(212)
plt.plot(time, wave_data[1], c="g")
plt.xlabel("right channel - time (seconds)")
plt.show()print("wave_data[0, 189:205] = ")
print(wave_data[0, 189:205])
print("wave_data[1, 189:205] = ")
print(wave_data[1, 189:205])print("yongqiang cheng")
/home/yongqiang/miniconda3/envs/pt-1.4_py-3.6/bin/python /home/yongqiang/pytorch_work/end2end-asr-pytorch-example/yongqiang.py
nchannels = 2
sampwidth = 2
framerate = 44100
nframes = 17504
comptype = NONE
compname = not compressed
object.getnchannels() = 2
object.getsampwidth() = 2
object.getframerate() = 44100
object.getnframes() = 17504
object.getcomptype() = NONE
object.getcompname() = not compressed
num_bytes = 70016 bytes
wave_data[0, 189:205] = 
[   1   -2    2   -2    2   -4    3   -5    5   -8    8  -18   81  1353 -300]
wave_data[1, 189:205] = 
[   0   -2    1   -2    2   -2    4   -4    4   -7    7  -16   67  1165 -256]
yongqiang chengProcess finished with exit code 0

4.1 data, sample_rate = torchaudio.load(audio_file, normalization=False)

针对 sample width in bytes = 2 bytes,4.1 中数据为 4.3 中对应原始数据乘以 2^16 = 65536

data[0, 189:205] = 
[    65536.   -131072.    131072.   -131072.131072.   -262144.    196608.   -327680.327680.   -524288.    524288.  -1179648.5308416.   8847360.    196608. -19660800.]data[1, 189:205] = 
[        0.   -131072.     65536.   -131072.131072.   -131072.    262144.   -262144.262144.   -458752.    458752.  -1048576.4390912.   7602176.    327680. -16777216.]

2^31 = 2147483648
2^16 = 65536
2^15 = 32768

4.2 data_normalized, sample_rate = torchaudio.load(audio_file, normalization=True)

4.2 中归一化数据为 4.1 中对应数据除以 2^31 = 2147483648。针对 sample width in bytes = 2 bytes,4.2 中数据为 4.3 中对应原始数据除以 2^(31 - 16) = 2^15 = 32768

data_normalized[0, 189:205] = 
[ 3.0517578e-05 -6.1035156e-05  6.1035156e-05 -6.1035156e-056.1035156e-05 -1.2207031e-04  9.1552734e-05 -1.5258789e-041.5258789e-04 -2.4414062e-04  2.4414062e-04 -5.4931641e-042.4719238e-03  4.1198730e-03  9.1552734e-05 -9.1552734e-03]data_normalized[1, 189:205] = 
[ 0.0000000e+00 -6.1035156e-05  3.0517578e-05 -6.1035156e-056.1035156e-05 -6.1035156e-05  1.2207031e-04 -1.2207031e-041.2207031e-04 -2.1362305e-04  2.1362305e-04 -4.8828125e-042.0446777e-03  3.5400391e-03  1.5258789e-04 -7.8125000e-03]

4.3 Python wave

针对 sample width in bytes = 2 bytes,4.1 中数据为 4.3 中对应原始数据乘以 2^16 = 65536

wave_data[0, 189:205] = 
[   1   -2    2   -22   -4    3   -55   -8    8  -1881  135    3 -300]wave_data[1, 189:205] = 
[   0   -2    1   -22   -2    4   -44   -7    7  -1667  116    5 -256]

这篇关于torchaudio - Python wave 读取音频数据对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401878

相关文章

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA