如何使用MONAI构建多分类dataset--直接从文件夹加载数据

2023-11-21 06:59

本文主要是介绍如何使用MONAI构建多分类dataset--直接从文件夹加载数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


如图所示,做多类别分类,每个文件夹代表一个类别,所有图像均为NIFTI格式,如何加载进 MONAI 进行训练?

在这之前,我们来看看 MONAI dataset 加载方法:

MONAI dataset 的数据(image, label)输入有两种形式,一种是 array(数组), 一种是dict(字典)。

简单区分一下

以 array 形式加载数据

images = ["IXI314-IOP-0889-T1.nii.gz","IXI249-Guys-1072-T1.nii.gz","IXI609-HH-2600-T1.nii.gz","IXI173-HH-1590-T1.nii.gz","IXI020-Guys-0700-T1.nii.gz",]labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)train_ds = ImageDataset(image_files=images, labels=labels, transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())

从代码里很容易看到,images 和 labels 都是 array, 直接作为 ImageDataset 的参数就行。

以 dict 形式加载数据

images = ["IXI314-IOP-0889-T1.nii.gz","IXI249-Guys-1072-T1.nii.gz","IXI609-HH-2600-T1.nii.gz","IXI173-HH-1590-T1.nii.gz","IXI020-Guys-0700-T1.nii.gz",]labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)train_files = [{"img": img, "label": label} for img, label in zip(images, labels)]
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4, pin_memory=torch.cuda.is_available())

这里 images 和 labels 都是 array, 只不过最后会把他们打包成一个字典,使得每个样本的 image和label相对应起来。然后传给 Dataset。

所以,回到最初的问题,不管用array形式还是dict形式,我们都需要构建一个 images/labels, 其中images里面是每个image的地址,如果是分类问题,labels是每个图像的类别, 如果是分割问题,则是ground truth的地址。

进一步的问题是:如何给文件夹的每个图像定义label?

当然,这在torchvision中,有一个函数(ImageFolder)可以轻松搞定!

但是!他的缺点是不可以加载后缀为gz的文件,但是医学图像大部分都是三维图像,后缀为nii.gz,怎么办???

我们可以借鉴他的思路,自己写一个支持 .gz文件的不就好了。

说干就干

第一种:直接修改源代码

查看源码,它不支持 gz的主要原因是它指定了后缀为下面这些👇

IMG_EXTENSIONS = (‘.jpg’, ‘.jpeg’, ‘.png’, ‘.ppm’, ‘.bmp’, ‘.pgm’, ‘.tif’, ‘.tiff’, ‘.webp’)

因为不包含gz,所以不支持。

源码在torchvision/datasets/folder.py

那一种简单粗暴地方法就是直接修改 IMG_EXTENSIONS,在后面加一个 ‘.gz’,就可以使用了。

使用案例:

from torchvision.datasets import ImageFolder
data_root = '/dataset'
dataset = ImageFolder(root=data_root)
classes = dataset.classes  # 获得类别名称(文件夹的名字)
class_to_idx = dataset.class_to_idx # 获得类别对应的索引或标签
images_labels = dataset.imgs
images = [tup[0] for tup in images_labels] # array
labels = [tup[1] for tup in images_labels] # array# for dict
train_files = [{'image': tup[0], 'label': tup[1]} for tup in images_labels] # dict

然后就可以传到上述两种dataset了,完美解决👍👍

但是这种方法对源代码造成了破坏,不易移植,虽然简单粗暴,但是不推荐!!

我们可以根据他的思路自己写一个

第二种:构建自己的ImageFolder

构建思路:

  • step 1 获取文件夹名称作为classes,并给它标签。
def find_classes(directory: str):"""Finds the class folders in a dataset."""classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())if not classes:raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}return classes, class_to_idx

  • step 2 遍历文件夹,赋予每个图像标签
    在这一步中,我们会检查每个图像的后缀。
img_label_dict = []
imgs = []
labels = []
for target_class in sorted(class_to_idx.keys()):class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class)if not os.path.isdir(target_dir):continuefor root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):for fname in sorted(fnames):if is_valid_file(fname): # 判断后缀是否有效path = os.path.join(root, fname)item = {'img': path, 'label': class_index}img_label_dict.append(item)imgs.append(path)labels.append(class_index)

这是关键代码,不全。

最后贴上完整代码

import os
from typing import Any, Callable, cast, Dict, List, Optional, Tuple# 从 data 根目录自动获取不同的类别文件夹,并自动给文件夹标签
def find_classes(directory: str):"""Finds the class folders in a dataset."""classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())if not classes:raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}return classes, class_to_idx# 检查 file 的后缀是不是在允许的扩展中
def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool:"""Checks if a file is an allowed extension.Args:filename (string): path to a fileextensions (tuple of strings): extensions to consider (lowercase)Returns:bool: True if the filename ends with one of given extensions"""return filename.lower().endswith(extensions)# 从根目录中获取 图像的类别,以及自动为类别设置类标签,返回【图像-标签对, 类别名, 类别对应的索引等】
def make_dataset(directory: str,class_to_idx: Optional[Dict[str, int]] = None,extensions: Optional[Tuple[str, ...]] = None,is_valid_file: Optional[Callable[[str], bool]] = None,
) -> List[Tuple[str, int]]:"""Generates a list of samples of a form (path_to_sample, class)."""directory = os.path.expanduser(directory)if class_to_idx is None:classes, class_to_idx = find_classes(directory)elif not class_to_idx:raise ValueError("'class_to_index' must have at least one entry to collect any samples.")both_none = extensions is None and is_valid_file is Noneboth_something = extensions is not None and is_valid_file is not Noneif both_none or both_something:raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time")if extensions is not None:def is_valid_file(x: str) -> bool:return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions))is_valid_file = cast(Callable[[str], bool], is_valid_file)img_label_dict = []imgs = []labels = []available_classes = set()for target_class in sorted(class_to_idx.keys()):class_index = class_to_idx[target_class]target_dir = os.path.join(directory, target_class)if not os.path.isdir(target_dir):continuefor root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):for fname in sorted(fnames):if is_valid_file(fname):path = os.path.join(root, fname)item = {'img': path, 'label': class_index}img_label_dict.append(item)imgs.append(path)labels.append(class_index)if target_class not in available_classes:available_classes.add(target_class)empty_classes = set(class_to_idx.keys()) - available_classesif empty_classes:msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "if extensions is not None:msg += f"Supported extensions are: {', '.join(extensions)}"raise FileNotFoundError(msg)return img_label_dict, imgs, labels, classes, class_to_idxif __name__ == '__main__':data_root = 'dataset'# classes, class_to_idx = find_classes(data_root)# 允许的扩展名extensions = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp', '.gz')img_label_dict, imgs, labels, classes, class_to_idx= make_dataset(data_root, extensions=extensions)

完结~

文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~

我是Tina, 我们下篇博客见~

白天工作晚上写文,呕心沥血

觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连
在这里插入图片描述

这篇关于如何使用MONAI构建多分类dataset--直接从文件夹加载数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/400632

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class