基于matlab实现SI、SIS、SIR、SIRS、SEIR、SEIRS流行病模型

2023-11-20 21:10

本文主要是介绍基于matlab实现SI、SIS、SIR、SIRS、SEIR、SEIRS流行病模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在流行病学和传染病领域,流行病模型是一种用来研究和预测疾病传播和控制的数学模型。其中,SI、SIS、SIR、SIRS、SEIR、SEIRS 是常见的流行病模型,它们分别代表了不同的疾病传播方式和人群状态转移过程。本文将介绍这些流行病模型的算法流程,帮助读者更好地理解和应用这些模型。

SI 模型是最简单的流行病模型之一,它假设人群中的个体只有两种状态:易感染者 (S) 和感染者 (I)。在 SI 模型中,易感染者可以被感染者传染,但感染后不会恢复,也不会获得免疫力。SI 模型的算法流程可以用以下差分方程表示:

dS/dt = -βSI dI/dt = βSI

其中,S 表示易感染者的数量,I 表示感染者的数量,β 表示传染率,t 表示时间。这个模型可以用来研究疾病的传播速度和规模。

SIS 模型是在 SI 模型的基础上加入了恢复的过程。在 SIS 模型中,感染者可以恢复成易感染者,但不会获得免疫力。SIS 模型的算法流程可以用以下差分方程表示:

dS/dt = -βSI + γI dI/dt = βSI - γI

其中,γ 表示恢复率。SIS 模型可以用来研究疾病在人群中的持续传播情况。

SIR 模型是在 SI 模型的基础上加入了免疫的过程。在 SIR 模型中,感染者可以恢复成免疫者,不再易感染。SIR 模型的算法流程可以用以下差分方程表示:

dS/dt = -βSI dI/dt = βSI - γI dR/dt = γI

其中,R 表示免疫者的数量,γ 表示恢复率。SIR 模型可以用来研究疾病在人群中的传播和结束情况。

SIRS 模型是在 SIR 模型的基础上加入了丧失免疫的过程。在 SIRS 模型中,免疫者可以丧失免疫力,重新成为易感染者。SIRS 模型的算法流程可以用以下差分方程表示:

dS/dt = -βSI + φR dI/dt = βSI - γI dR/dt = γI - φR

其中,φ 表示丧失免疫率。SIRS 模型可以用来研究疾病在人群中的循环传播情况。

SEIR 模型是在 SIR 模型的基础上加入了潜伏期的过程。在 SEIR 模型中,易感染者可以先成为潜伏者,然后再成为感染者。SEIR 模型的算法流程可以用以下差分方程表示:

dS/dt = -βSI dE/dt = βSI - σE dI/dt = σE - γI dR/dt = γI

其中,E 表示潜伏者的数量,σ 表示潜伏期的逆转率。SEIR 模型可以用来研究疾病在人群中的潜伏期和传播情况。

SEIRS 模型是在 SEIR 模型的基础上加入了丧失免疫的过程。在 SEIRS 模型中,免疫者可以丧失免疫力,重新成为易感染者。SEIRS 模型的算法流程可以用以下差分方程表示:

dS/dt = -βSI + φR dE/dt = βSI - σE dI/dt = σE - γI dR/dt = γI - φR

其中,φ 表示丧失免疫率。SEIRS 模型可以用来研究疾病在人群中的潜伏期、传播和循环传播情况。

总结而言,SI、SIS、SIR、SIRS、SEIR、SEIRS 是常见的流行病模型,它们分别代表了不同的疾病传播方式和人群状态转移过程。通过了解这些模型的算法流程,我们可以更好地理解和预测疾病的传播和控制,为疾病防控工作提供科学依据。希望本文能够帮助读者更好地理解和应用流行病模型,促进疾病防控工作的开展。

📣 部分代码

% test close allN = 1;I0 = 0.01;beta = 1.0;gamma = 1/3;sigma = 1/7;tend = 50;aa = epidemic('SEIR','N',N,'I0',I0,'beta',beta,'gamma',gamma,...    'sigma',sigma,'tend',tend);run(aa)plot(aa)

⛳️ 运行结果

🔗 参考文献

[1]  Batista M .epidemic Classical deterministic contagious epidemic models without vital dynamics[J].  2020.DOI:10.13140/RG.2.2.13709.36322.

[2] 黄忠乾.两斑块环境下传染病模型的动力学分析[J].温州大学, 2019.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于基于matlab实现SI、SIS、SIR、SIRS、SEIR、SEIRS流行病模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397451

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja