python实现SI、SIS、SIR、SIRS、SEIR、SEIRS模型

2023-11-20 21:10

本文主要是介绍python实现SI、SIS、SIR、SIRS、SEIR、SEIRS模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传染病传播模型

  • SI
  • SIS
  • SIR
  • SIRS
  • SEIR(相比较贴合新冠状病毒)
  • SEIRS

在家闲着无事,搜了一些关于传染病模型的知识,在此做个总结。

SI

最简单的SI模型首先把人群分为2种,一种是易感者(Susceptibles),易感者是健康的人群,用S表示其人数,另外一种是感染者(The Infected),人数用 I来表示。
假设:
1、在疾病传播期间总人数N不变,N=S+I
2、每个病人每天接触人数为定值

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# 感染者每天接触人数
P = 1
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSI(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (P * beta * X[0] * X[1]) / N + gamma * X[1]# 感染个体变化Y[1] = (P * beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSI,INI,T_range)plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

在这里插入图片描述

SIS

在SI模型基础上加入康复的概率

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSIS(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIS,INI,T_range)plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

在这里插入图片描述

SIR

SIR是三个单词首字母的缩写,其中S是Susceptible的缩写,表示易感者;I是Infective的缩写,表示感染者;R是Removal的缩写,表示移除者。这个模型本身是在研究这三者的关系。在病毒最开始的时候,所有人都是易感者,也就是所有人都有可能中病毒;当一部分人在接触到病毒以后中病毒了,变成了感染者;感染者会接受各种治疗,最后变成了移除者。
在这里插入图片描述
该模型有两个假设条件
1.一段时间内总人数N是不变的,也就是不考虑新生以及自然死亡的人数
2.从S到I的变化速度α、从I到R的变化速度β也是保持不变的
3.移除者不再被感染

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIR(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIR,INI,T_range)plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

在这里插入图片描述

SIRS

与SIR不同在于,康复者的免疫力是暂时的,康复者会转化为易感者

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIRS(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1] - X[2] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIRS,INI,T_range)plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

在这里插入图片描述

SEIR(相比较贴合新冠状病毒)

在其他模型的基础上,加入传染病潜伏期的存在,更贴合这次的新冠状病毒

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt# N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIR(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N# 潜伏个体变化(每日有一部分转为感染者)Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIR,INI,T_range)plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.')plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

在这里插入图片描述

SEIRS

同时有潜伏期且免疫暂时的条件

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt# N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIRS(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2] - X[3] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIRS,INI,T_range)plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.')plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

在这里插入图片描述

这篇关于python实现SI、SIS、SIR、SIRS、SEIR、SEIRS模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397450

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详