sirs模型_基于plotly的数据可视化——经典传染病模型

2023-11-20 21:10

本文主要是介绍sirs模型_基于plotly的数据可视化——经典传染病模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

e93645571af7c3131b11345c5e7a464c.png

本文只讲述如何使用Python将模型中的微分方程进行可视化,具体各个模型的理论细节,请移步其他专业传染病动力学文章。

SI模型

SI模型只适合研究具有高传染风险又不能被治愈的病(比如HIV)已经患病的人就不能再被传染了 。人群分为两类 :易感者(S-susceptiable)和感染者(I-infective)

SI-Model

#SI-Modelimport scipy.integrate as spi
import numpy as np
import plotly as py
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSI(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSI,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

4dacb86b1f2a32a086a6cba5bd887fce.png
SI-Model

SIS模型

SIS模型适合研究具有传染性和反复性的流行病,和SI模型做比较,区别就是计算感染者的增加数时要 减去被治愈的人数

SIS-Model

#SIS-Modelimport scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSIS(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

a5d569a69f66dbcc0321b1415e2cd615.png
SIS-Model

SIR模型

SIR模型适合研究没有潜伏期的急性传染病,治疗后能够痊愈并具有抗病性。模型加入移出者(Removed),即被治愈的病人不会再被传染。

SIR-Model

#SIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIR(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIR-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

ef35be34e5e687ee60cda8839ba5e6ee.png
SIR-Model

SIRS模型

现实情况却是部分传染病并不会痊愈后拥有终身抗体,即被治愈的病人 仍会再被传染。SIRS模型相对SIR模型加入抗体时间

SIRS-Model

#SIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 15
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIRS(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1] - X[2] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIRS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

91a6282ef0beb03b0865fd02a5f36774.png
SIRS-Model

SEIR模型

SIR模型忽略了太多因素了导致和实际情况有较大出入,比如潜伏期,药物,出生死亡等等。接来下可以把 潜伏期考虑进去,新增一个人群,叫 潜伏者E(exposed)

SEIR-Model

#SEIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIR(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="yellow")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

13c682dbb26277249d1b689a69658ebb.png
SERI-Model

SEIRS模型

SEIRS模型即对SEIR模型 添加抗体存在时长

SEIRS-Model

#SEIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 15
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIRS(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2] - X[3] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="orange")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

143fb5dffcd3748974dc1a58b99bfa8b.png
SERIS-Model
病毒其实不可怕,你宅我宅它就挂
病毒其实不可怕,戴好口罩它也挂

参考:

关于传染病的数学模型有哪些?​www.zhihu.com
363fc313654168a2e1d3d5eef1b461d1.png
关于传染病的数学模型有哪些?​www.zhihu.com
fd1db1c8609d9317a05c6b69d5d04c2a.png
https://www.bilibili.com/video/av85508117​www.bilibili.com

这篇关于sirs模型_基于plotly的数据可视化——经典传染病模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397449

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很