sirs模型_基于plotly的数据可视化——经典传染病模型

2023-11-20 21:10

本文主要是介绍sirs模型_基于plotly的数据可视化——经典传染病模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

e93645571af7c3131b11345c5e7a464c.png

本文只讲述如何使用Python将模型中的微分方程进行可视化,具体各个模型的理论细节,请移步其他专业传染病动力学文章。

SI模型

SI模型只适合研究具有高传染风险又不能被治愈的病(比如HIV)已经患病的人就不能再被传染了 。人群分为两类 :易感者(S-susceptiable)和感染者(I-infective)

SI-Model

#SI-Modelimport scipy.integrate as spi
import numpy as np
import plotly as py
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSI(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSI,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

4dacb86b1f2a32a086a6cba5bd887fce.png
SI-Model

SIS模型

SIS模型适合研究具有传染性和反复性的流行病,和SI模型做比较,区别就是计算感染者的增加数时要 减去被治愈的人数

SIS-Model

#SIS-Modelimport scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSIS(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

a5d569a69f66dbcc0321b1415e2cd615.png
SIS-Model

SIR模型

SIR模型适合研究没有潜伏期的急性传染病,治疗后能够痊愈并具有抗病性。模型加入移出者(Removed),即被治愈的病人不会再被传染。

SIR-Model

#SIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIR(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIR-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

ef35be34e5e687ee60cda8839ba5e6ee.png
SIR-Model

SIRS模型

现实情况却是部分传染病并不会痊愈后拥有终身抗体,即被治愈的病人 仍会再被传染。SIRS模型相对SIR模型加入抗体时间

SIRS-Model

#SIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 15
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIRS(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1] - X[2] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIRS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

91a6282ef0beb03b0865fd02a5f36774.png
SIRS-Model

SEIR模型

SIR模型忽略了太多因素了导致和实际情况有较大出入,比如潜伏期,药物,出生死亡等等。接来下可以把 潜伏期考虑进去,新增一个人群,叫 潜伏者E(exposed)

SEIR-Model

#SEIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIR(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="yellow")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

13c682dbb26277249d1b689a69658ebb.png
SERI-Model

SEIRS模型

SEIRS模型即对SEIR模型 添加抗体存在时长

SEIRS-Model

#SEIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 15
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIRS(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2] - X[3] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="orange")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

143fb5dffcd3748974dc1a58b99bfa8b.png
SERIS-Model
病毒其实不可怕,你宅我宅它就挂
病毒其实不可怕,戴好口罩它也挂

参考:

关于传染病的数学模型有哪些?​www.zhihu.com
363fc313654168a2e1d3d5eef1b461d1.png
关于传染病的数学模型有哪些?​www.zhihu.com
fd1db1c8609d9317a05c6b69d5d04c2a.png
https://www.bilibili.com/video/av85508117​www.bilibili.com

这篇关于sirs模型_基于plotly的数据可视化——经典传染病模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397449

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转