Google Earth Engine谷歌地球引擎GEE中ee.ImageCollection格式多张栅格图像数据基本处理操作

本文主要是介绍Google Earth Engine谷歌地球引擎GEE中ee.ImageCollection格式多张栅格图像数据基本处理操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文主要对GEE中的ee.ImageCollection格式数据图层基本处理操作加以介绍。本文是谷歌地球引擎(Google Earth Engine,GEE)系列教学文章的第十一篇,更多GEE文章请参考专栏:GEE学习与应用(https://blog.csdn.net/zhebushibiaoshifu/category_11081040.html)。

  在第二篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/117296956)中,我们通过搜索的方式导入了GEE内置的遥感影像数据与各类矢量数据;而在第九篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/119545059)中,我们通过代码的方式获取了Landsat 5 Collection 1 Tier 1的大气表观反射率TOA Reflectance产品。本文依然采用代码方式,获取Landsat 8 Collection 1 Tier 1的初始影像Raw Scenes产品。

  其中,依据第十篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/119568274)中提及的ee.Geometry.Point()函数,设置一个点要素,作为后期研究区域的参照点(即获取能覆盖这一点要素的Landsat 8遥感影像);同时依据第二篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/117296956)中提及的遥感影像时间筛选方法,对Landsat 8遥感影像的时间段进行筛选。这里用到了两个之前教学博客中没有介绍的新函数——首先是.filterBounds()函数,作用为获取覆盖点要素point的遥感影像,即对遥感影像进行空间角度的筛选;其次是.sort()函数,作用为对ee.ImageCollection格式数据中的多层遥感影像按照一定规则进行排序。

var point=ee.Geometry.Point(116.36863, 39.961029);
var date_start=ee.Date("2020-05-01");
var date_end=ee.Date("2020-07-01");
var my_landsat=ee.ImageCollection("LANDSAT/LC08/C01/T1").filterBounds(point)
.filterDate(date_start,date_end).sort("CLOUD_COVER",true);
print(my_landsat);

  在这里,"CLOUD_COVER"表示遥感影像的云覆盖量,true表示按照排序指标的升序进行排列——即对于ee.ImageCollection格式数据中多景遥感影像,基于云覆盖量由少至多的顺序进行排列。还有需要强调的一点是,"CLOUD_COVER"并不是遥感影像波段的名称,而属于影像的元数据,或者说是属性。

在这里插入图片描述

  通过print()函数打印在右侧的信息,我们可以看到这个ee.ImageCollection格式数据中包含三个元素(即3 elements),也就是含有三景重叠的遥感影像。

在这里插入图片描述

  我们可以通过.first()函数获取一个ee.ImageCollection格式数据中的第一景影像。在这里,由于前述代码实现了云覆盖量由少至多的顺序进行排列,因此第一景影像也就是云覆盖量最低的那一景影像。

var first_landsat=my_landsat.first();
print(first_landsat);

在这里插入图片描述

  除了本文开头提及的按照一个点要素来筛选遥感影像,我们还可以按照LandsatPathRow分幅进行筛选。

//var point=ee.Geometry.Point(116.36863, 39.961029);
var date_start=ee.Date("2019-07-01");
var date_end=ee.Date("2020-06-01");
var my_landsat=ee.ImageCollection("LANDSAT/LC08/C01/T1")
.filter(ee.Filter.eq("WRS_PATH",123))
.filter(ee.Filter.eq("WRS_ROW",032))
.filterDate(date_start,date_end);
print(my_landsat);

  其中,ee.Filter.eq()函数表示按照某种方式进行筛选,"WRS_PATH"参数表示按照遥感影像属性中的Path分幅作为筛选标准,123表示筛选出Path号为123的遥感影像。

在这里插入图片描述

  筛选完后,我们可以将ee.ImageCollection格式数据中每一个要素的名称(即每一景遥感影像的名称)转为列表格式。

var list=my_landsat.toList(100);
print(list);

  其中,.toList()函数作用是将原有数据(ee.ImageCollection格式数据中每一个要素的名称)转为列表,100表示从ee.ImageCollection格式数据中获取要素名称的最大个数(即最多从ee.ImageCollection格式数据中获取100个要素的名称存入列表),这一参数只要远大于ee.ImageCollection格式数据中的要素个数即可。

在这里插入图片描述

  可以通过.length()函数获取列表数据的长度;这一长度也就是ee.ImageCollection格式数据中要素的个数。

var list_size=list.length();
print("The size of list is:",list_size);

在这里插入图片描述

  此外,还可以对ee.ImageCollection格式数据执行.size()函数,同样可以获取其要素个数。

var image_count=my_landsat.size();
print("The size of image is:",image_count);

在这里插入图片描述

  我们还可以对ee.ImageCollection格式数据的元数据(属性)进行获取。

print(my_landsat);

  首先,打印一下ee.ImageCollection格式数据,可以看到其properties中包含了很多属性信息;接下来我们就以date_range为例进行操作。date_range表示ee.ImageCollection格式数据中,遥感影像成像的起止时间。

在这里插入图片描述

  利用.get()函数就可以获取ee.ImageCollection格式数据的具体某一项属性。

var date_range=my_landsat.get("date_range");
print(date_range);

  打印出的起止时间格式如下图所示。这种用一长串数字来表示时间的格式为Unix Epoch,即Unix时间戳,其表示从1970年01月01 日00:00:00(GMT)开始以来的秒数;这里还需要注意,在JavaScript中,Unix Epoch的单位是毫秒,若要换为秒需要进行换算。

在这里插入图片描述

  我们还可以将起止时间转换为列表的形式。

var date_range_list=ee.List(date_range);
print(date_range_list);

  执行代码,可以看到是否转换为列表对于起止时间的显示而言并没有很大区别。

在这里插入图片描述

  Unix Epoch这种时间表示方法看起来不方便,我们可以将其转换为我们熟知的日期表示格式。

var date_range_ymd=ee.DateRange(date_range_list.get(0),date_range_list.get(1));
print("Date range is:",date_range_ymd);

  其中,ee.DateRange()就是一个可以起到转换时间格式作用的函数;同时,分别用.get()函数获取起止时间的第一个和第二个元素;第九篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/119545059)已经介绍过,列表元素初始下标为0,因此分别用01来获取列表中的第一个和第二个元素。

  起止时间转换后,我们可以看到2013年04月到2021年08月这个范围并不是前面我们用.filterDate(date_start,date_end)语句筛选后的日期,而是Landsat 8卫星发射并投入使用后到目前的时间;因此我们可以知道,ee.ImageCollection格式数据中properties内的date_range属性指的是整个初始数据集Landsat 8 Collection 1 Tier 1的初始影像Raw Scenes产品)的起止时间,而不是经过筛选后(包括经过成像时间筛选与空间筛选后)得到的剩下几景遥感影像的起止时间。

在这里插入图片描述

  还可以利用.aggregate_stats()函数统计ee.ImageCollection格式数据某一项属性的信息,其统计得到的信息包括ee.ImageCollection格式数据中,全部遥感影像的某一项属性值的极值、总和、平均值、标准差等。

var statistics=my_landsat.aggregate_stats("SUN_ELEVATION");
print(statistics);

在这里插入图片描述

  此外,可以将.sort()函数与.first()函数一起执行,从而获取排序后,排在第一位的那一景遥感影像。

var least_cloud=my_landsat.sort("CLOUD_COVER",true).first();
print(least_cloud);

  这里需要注意,执行上述代码后得到的是一景遥感影像(即ee.Image格式的数据)。

在这里插入图片描述

  同时,.sort()函数排序后,我们还可以获取排序前几位的遥感影像。

var recent_image=my_landsat.sort("system:time_start",false).limit(10);
print(recent_image);

  其中,利用.limit()函数获取有限的遥感影像,10表示获取10景,即获取成像时间离目前最近的10景遥感影像。因此,执行这一代码后获取的是多景遥感影像,即ee.ImageCollection格式的数据。

在这里插入图片描述

欢迎关注公众号/CSDN/知乎/微博:疯狂学习GIS

这篇关于Google Earth Engine谷歌地球引擎GEE中ee.ImageCollection格式多张栅格图像数据基本处理操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393504

相关文章

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

Mysql常见的SQL语句格式及实用技巧

《Mysql常见的SQL语句格式及实用技巧》本文系统梳理MySQL常见SQL语句格式,涵盖数据库与表的创建、删除、修改、查询操作,以及记录增删改查和多表关联等高级查询,同时提供索引优化、事务处理、临时... 目录一、常用语法汇总二、示例1.数据库操作2.表操作3.记录操作 4.高级查询三、实用技巧一、常用语

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad