Google Earth Engine谷歌地球引擎GEE中ee.ImageCollection格式多张栅格图像数据基本处理操作

本文主要是介绍Google Earth Engine谷歌地球引擎GEE中ee.ImageCollection格式多张栅格图像数据基本处理操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文主要对GEE中的ee.ImageCollection格式数据图层基本处理操作加以介绍。本文是谷歌地球引擎(Google Earth Engine,GEE)系列教学文章的第十一篇,更多GEE文章请参考专栏:GEE学习与应用(https://blog.csdn.net/zhebushibiaoshifu/category_11081040.html)。

  在第二篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/117296956)中,我们通过搜索的方式导入了GEE内置的遥感影像数据与各类矢量数据;而在第九篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/119545059)中,我们通过代码的方式获取了Landsat 5 Collection 1 Tier 1的大气表观反射率TOA Reflectance产品。本文依然采用代码方式,获取Landsat 8 Collection 1 Tier 1的初始影像Raw Scenes产品。

  其中,依据第十篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/119568274)中提及的ee.Geometry.Point()函数,设置一个点要素,作为后期研究区域的参照点(即获取能覆盖这一点要素的Landsat 8遥感影像);同时依据第二篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/117296956)中提及的遥感影像时间筛选方法,对Landsat 8遥感影像的时间段进行筛选。这里用到了两个之前教学博客中没有介绍的新函数——首先是.filterBounds()函数,作用为获取覆盖点要素point的遥感影像,即对遥感影像进行空间角度的筛选;其次是.sort()函数,作用为对ee.ImageCollection格式数据中的多层遥感影像按照一定规则进行排序。

var point=ee.Geometry.Point(116.36863, 39.961029);
var date_start=ee.Date("2020-05-01");
var date_end=ee.Date("2020-07-01");
var my_landsat=ee.ImageCollection("LANDSAT/LC08/C01/T1").filterBounds(point)
.filterDate(date_start,date_end).sort("CLOUD_COVER",true);
print(my_landsat);

  在这里,"CLOUD_COVER"表示遥感影像的云覆盖量,true表示按照排序指标的升序进行排列——即对于ee.ImageCollection格式数据中多景遥感影像,基于云覆盖量由少至多的顺序进行排列。还有需要强调的一点是,"CLOUD_COVER"并不是遥感影像波段的名称,而属于影像的元数据,或者说是属性。

在这里插入图片描述

  通过print()函数打印在右侧的信息,我们可以看到这个ee.ImageCollection格式数据中包含三个元素(即3 elements),也就是含有三景重叠的遥感影像。

在这里插入图片描述

  我们可以通过.first()函数获取一个ee.ImageCollection格式数据中的第一景影像。在这里,由于前述代码实现了云覆盖量由少至多的顺序进行排列,因此第一景影像也就是云覆盖量最低的那一景影像。

var first_landsat=my_landsat.first();
print(first_landsat);

在这里插入图片描述

  除了本文开头提及的按照一个点要素来筛选遥感影像,我们还可以按照LandsatPathRow分幅进行筛选。

//var point=ee.Geometry.Point(116.36863, 39.961029);
var date_start=ee.Date("2019-07-01");
var date_end=ee.Date("2020-06-01");
var my_landsat=ee.ImageCollection("LANDSAT/LC08/C01/T1")
.filter(ee.Filter.eq("WRS_PATH",123))
.filter(ee.Filter.eq("WRS_ROW",032))
.filterDate(date_start,date_end);
print(my_landsat);

  其中,ee.Filter.eq()函数表示按照某种方式进行筛选,"WRS_PATH"参数表示按照遥感影像属性中的Path分幅作为筛选标准,123表示筛选出Path号为123的遥感影像。

在这里插入图片描述

  筛选完后,我们可以将ee.ImageCollection格式数据中每一个要素的名称(即每一景遥感影像的名称)转为列表格式。

var list=my_landsat.toList(100);
print(list);

  其中,.toList()函数作用是将原有数据(ee.ImageCollection格式数据中每一个要素的名称)转为列表,100表示从ee.ImageCollection格式数据中获取要素名称的最大个数(即最多从ee.ImageCollection格式数据中获取100个要素的名称存入列表),这一参数只要远大于ee.ImageCollection格式数据中的要素个数即可。

在这里插入图片描述

  可以通过.length()函数获取列表数据的长度;这一长度也就是ee.ImageCollection格式数据中要素的个数。

var list_size=list.length();
print("The size of list is:",list_size);

在这里插入图片描述

  此外,还可以对ee.ImageCollection格式数据执行.size()函数,同样可以获取其要素个数。

var image_count=my_landsat.size();
print("The size of image is:",image_count);

在这里插入图片描述

  我们还可以对ee.ImageCollection格式数据的元数据(属性)进行获取。

print(my_landsat);

  首先,打印一下ee.ImageCollection格式数据,可以看到其properties中包含了很多属性信息;接下来我们就以date_range为例进行操作。date_range表示ee.ImageCollection格式数据中,遥感影像成像的起止时间。

在这里插入图片描述

  利用.get()函数就可以获取ee.ImageCollection格式数据的具体某一项属性。

var date_range=my_landsat.get("date_range");
print(date_range);

  打印出的起止时间格式如下图所示。这种用一长串数字来表示时间的格式为Unix Epoch,即Unix时间戳,其表示从1970年01月01 日00:00:00(GMT)开始以来的秒数;这里还需要注意,在JavaScript中,Unix Epoch的单位是毫秒,若要换为秒需要进行换算。

在这里插入图片描述

  我们还可以将起止时间转换为列表的形式。

var date_range_list=ee.List(date_range);
print(date_range_list);

  执行代码,可以看到是否转换为列表对于起止时间的显示而言并没有很大区别。

在这里插入图片描述

  Unix Epoch这种时间表示方法看起来不方便,我们可以将其转换为我们熟知的日期表示格式。

var date_range_ymd=ee.DateRange(date_range_list.get(0),date_range_list.get(1));
print("Date range is:",date_range_ymd);

  其中,ee.DateRange()就是一个可以起到转换时间格式作用的函数;同时,分别用.get()函数获取起止时间的第一个和第二个元素;第九篇GEE教学博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/119545059)已经介绍过,列表元素初始下标为0,因此分别用01来获取列表中的第一个和第二个元素。

  起止时间转换后,我们可以看到2013年04月到2021年08月这个范围并不是前面我们用.filterDate(date_start,date_end)语句筛选后的日期,而是Landsat 8卫星发射并投入使用后到目前的时间;因此我们可以知道,ee.ImageCollection格式数据中properties内的date_range属性指的是整个初始数据集Landsat 8 Collection 1 Tier 1的初始影像Raw Scenes产品)的起止时间,而不是经过筛选后(包括经过成像时间筛选与空间筛选后)得到的剩下几景遥感影像的起止时间。

在这里插入图片描述

  还可以利用.aggregate_stats()函数统计ee.ImageCollection格式数据某一项属性的信息,其统计得到的信息包括ee.ImageCollection格式数据中,全部遥感影像的某一项属性值的极值、总和、平均值、标准差等。

var statistics=my_landsat.aggregate_stats("SUN_ELEVATION");
print(statistics);

在这里插入图片描述

  此外,可以将.sort()函数与.first()函数一起执行,从而获取排序后,排在第一位的那一景遥感影像。

var least_cloud=my_landsat.sort("CLOUD_COVER",true).first();
print(least_cloud);

  这里需要注意,执行上述代码后得到的是一景遥感影像(即ee.Image格式的数据)。

在这里插入图片描述

  同时,.sort()函数排序后,我们还可以获取排序前几位的遥感影像。

var recent_image=my_landsat.sort("system:time_start",false).limit(10);
print(recent_image);

  其中,利用.limit()函数获取有限的遥感影像,10表示获取10景,即获取成像时间离目前最近的10景遥感影像。因此,执行这一代码后获取的是多景遥感影像,即ee.ImageCollection格式的数据。

在这里插入图片描述

欢迎关注公众号/CSDN/知乎/微博:疯狂学习GIS

这篇关于Google Earth Engine谷歌地球引擎GEE中ee.ImageCollection格式多张栅格图像数据基本处理操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393504

相关文章

Java使用Stream流的Lambda语法进行List转Map的操作方式

《Java使用Stream流的Lambda语法进行List转Map的操作方式》:本文主要介绍Java使用Stream流的Lambda语法进行List转Map的操作方式,具有很好的参考价值,希望对大... 目录背景Stream流的Lambda语法应用实例1、定义要操作的UserDto2、ListChina编程转成M

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句