算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析

2023-11-11 22:40

本文主要是介绍算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分支界限法

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树,裁剪那些不能得到最优解的子树以提高搜索效率。

分支界限法解题的一般思路:

(1)分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约
束条件的解中找出在某种意义下的最优解。
(2)搜索方式:以广度优先或以最小耗费优先的方式搜索解空间树。分支限
界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(3)在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一
旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可
行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(4)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩
展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

旅行售货员问题

某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费),他要
选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(总
旅费)最小。
在这里插入图片描述

求解思想:

旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图 G 中找出费用最小的周游路线。路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括 V 中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。

在具体实现时,用邻接矩阵表示所给的图G。在类Traveing中用二维数组a存储图G的邻接矩阵。

template <class Type>
class Traveling
{
public:Type BBTSP(int *v, Type **, int, Type);
private:Type **a,                                   //图G的邻接矩阵NoEdge;                                //图G的无边标志int n;                                      //图G的顶点数
};

要找最小费用旅行售货员回路,选用最小堆表示活结点优先队列。最小堆中元素的类型为MinHeapNode。该类型结点包含域x,用于记录当前解;s表示结点在排列树中的层次,从排列树的根结点到该结点的路径为x[0:s],需要进一步搜索的顶点是x[s+1:n-1]。cc表示当前费用,lcost是子树费用的下界,rcost是x[x:n-1]中顶点最小出边费用和。

//队列中元素类型
template <class Type>
class MinHeapNode
{template <class T>friend class Traveling;
public:bool operator < (const MinHeapNode &MH) const{return lcost > MH.lcost;}
private:Type rcost,                                 //x[s:n-1]中顶点最小出边费用和lcost,                                 //子树费用的下界cc;                                    //当前费用int s,                                      //根结点到当前结点的路径为x[0:s]*x;                                     //需要进一步搜索的顶点是x[s+1:n-1]
};

算法开始时创建一个最小堆,表示活结点优先队列。堆中每个结点的lcost值是优先队列的优先级。接着计算出图中每个顶点的最小费用出边并用Minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的Minout作算法初始化。算法的第一个扩展结点是排列树中根结点的唯一儿子结点。在该结点处,已确定的回路中唯一顶点为顶点1.初始时有s=0,x[0]=1,x[1:n-1]=(2,3,…,n),cc=0且 rcost = \sum_{j=s}^{n}Minout[i],算法中用bestc记录当前最优值。

template <class Type>
Type Traveling<Type>::BBTSP(int *v, Type **G, int tn, Type tNoEdge)
{priority_queue<MinHeapNode<Type> > pq;MinHeapNode<Type> E, N;Type bestc, cc, rcost, MinSum, *MinOut, b;int i, j;a = G;n = tn;NoEdge = tNoEdge;MinSum = 0;                                             //最小出边费用和MinOut = new Type[n+1];                                 //计算MinOut[i]=顶点i的最小出边费用for(i = 1; i <= n; i++){MinOut[i] = NoEdge;for(j = 1; j <= n; j++)if(a[i][j] != NoEdge && (a[i][j] < MinOut[i] || MinOut[i] == NoEdge))MinOut[i] = a[i][j];if(MinOut[i] == NoEdge)                             //无回路return NoEdge;MinSum += MinOut[i];}//初始化E.s = 0;E.cc = 0;E.rcost = MinSum;E.x = new int[n];for(i = 0; i < n; i++)E.x[i] = i+1;bestc = NoEdge;//搜索排列空间树while(E.s < n-1)                                        //非叶结点{if(E.s == n-2)                                      //当前扩展结点是叶结点的父结点 再加2条边构成回路{                                                   //所构成回路是否优于当前最优解if(a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge &&(E.cc+a[E.x[n-2]][E.x[n-1]]+a[E.x[n-1]][1] < bestc || bestc==NoEdge)){//费用更小的路bestc = E.cc + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1];E.cc = bestc;E.lcost = bestc;E.s++;pq.push(E);}elsedelete []E.x;                               //舍弃扩展结点}else                                                //产生当前扩展结点儿子结点{for(i = E.s+1; i < n; i++)if(a[E.x[E.s]][E.x[i]] != NoEdge){//可行儿子结点cc = E.cc + a[E.x[E.s]][E.x[i]];        //当前费用rcost = E.rcost - MinOut[E.x[E.s]];     //更新最小出边费用和b = cc + rcost;                         //下界if(b < bestc || bestc == NoEdge)        //子树可能含最优解 结点插入最小堆{N.s = E.s + 1;N.cc = cc;N.lcost = b;N.rcost = rcost;N.x = new int[n];for(j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s+1] = E.x[i];                //获得新的路径N.x[i] = E.x[E.s+1];pq.push(N);                         //加入优先队列}}delete []E.x;                                   //完成结点扩展}if(pq.empty())                                      //堆已空break;E = pq.top();                                       //取下一扩展结点pq.pop();}if(bestc == NoEdge)                                     //无回路return NoEdge;for(i = 0; i < n; i++)                                  //将最优解复制到v[1:n]v[i+1] = E.x[i];while(pq.size())                                        //释放最小堆中所有结点{E = pq.top();pq.pop();delete []E.x;}return bestc;
}

这篇关于算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393301

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg