未来5G编码器之海思小于100毫秒低延迟直播方案评测

本文主要是介绍未来5G编码器之海思小于100毫秒低延迟直播方案评测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文摘自:https://blog.csdn.net/weixin_45326556/article/details/95058054
很多人对于直播的带来的延时还是挺在意的,下面我分享的这篇文章能给大家带来个技术上的指引,好了,坐下来慢慢看:

背景

最近接触了许多客户,许多是做安全方面产品的客户,有些还涉及到jun队后勤的等等,他们普遍对采集延迟,编码延迟,传输延迟等都有很大关注。例如有个客户是做反狙击探测的,那可是与生命相关的,容不得试错的(PS:我无法判断海思Hi3531D/Hi3521D系列产品是否适合做这种高实时性的产品,当然做个评估或者算法验证完全是可以的)。

测量方法

精准测试延迟的方法要用专业仪器来测量,或者在程序中记录精准时间来判断,这些方法过于专业,也不方便展示,本文采用的测量方法是目测法,这个方法不大精准,但最容易展示。
在这里插入图片描述
主板参考链接:https://item.taobao.com/item.htm?spm=a2oq0.12575281.0.0.15d11debUtUQr8&ft=t&id=630502728823
    如上图所,通常直播是经过采集,编码,网络输出,网络接收,解码,显示输出,经过这几大环节后,用户才能看到直播的画面,其总延迟是T1-T3;采集延迟为T1-T2。直播延迟还跟网络协议有关,其中UDP,RTMP和RTSP延迟相对较小,HTTP延迟偏大,延迟最大的是HLS,这种技术是切片技术,很适合做对延迟要求不高的网络直播(例如非互动的单向直播,IPTV就是这类),该技术最大的好处就是能在网络带宽波动很大的环境下也能保持流畅(其实就是因为缓冲够大嘛)。

测试结果

为了抓拍到T1,T2,T3,我们使用单反相机快速连拍功能,分别对UDP,RTSP和RTMP协议的测试进行抓拍,然后对抓拍到图片序列进行统计分析。抓拍到的图片序列已经上传到百度网盘,需要的可以从我们百度网盘上下载:
链接:https://pan.baidu.com/s/1ySnVeRHsuvzvtywh8xDz1g
提取码:qx9x
在这里插入图片描述
    如上图所示,做为信号源的笔记本显示的时间码是19:35:55.217,而编码板采集预览显示的时间码也是19:35:55.217,说明采集延迟为T1-T2=217-217=0,忽略不计;解码板通过网络接收来自编码板的网络流,解码后通过HDMI输出,其显示的时间码是19:35:55.174,那说明延迟为T1-T3=217-174=43,也就是延迟为43毫秒。为了方便用户查看和对比,我们把拍下来的照片的时间码做了记录,并用EXCEL表做了计算,参见下表。
在这里插入图片描述
    从上表可以看出,UDP(TS封装)的平均延迟为71.1毫秒,由于我们的TS封装是使用了FFMPEG来进行封装的,所以封装延迟较大,如果采用RAW H264/H265 UDP,估计延迟会大大降低;RTSP OVER UDP平均延迟为83豪秒,还真搞不懂这个延迟什么会这么大;RTMP的延迟仅为52.6毫秒,真是有点意外,而且每个采样的延迟几乎都是在43毫秒左右,很均匀,不像TS-UDP和RTSP OVER UDP每个采样测出的延迟数据波动有点大。

源程序

编码端源程序

完整的工程参见:https://gitee.com/LinkPi/3531D/tree/master/LowLatencyENC

//main.cpp
#include <QCoreApplication>
#include "Link.h"#define RTSP
//#define UDP
//#define RTMPint main(int argc, char *argv[])
{QCoreApplication a(argc, argv);Link::init();LinkObject *vi=Link::create("InputVi");QVariantMap dataVi;dataVi["interface"]="HDMI-A";vi->start(dataVi);LinkObject *vo=Link::create("OutputVo");QVariantMap dataVo;dataVo["type"]="hdmi";dataVo["lowLatency"]=true;vo->start(dataVo);vi->linkV(vo);LinkObject *encV=Link::create("EncodeV");QVariantMap dataEncV;dataEncV["codec"]="h264";dataEncV["framerate"]=60;dataEncV["width"]=1920;dataEncV["height"]=1080;dataEncV["bitrate"]=8000;dataEncV["lowLatency"]=true;encV->start(dataEncV);LinkObject *mux=Link::create("Mux");QVariantMap dataRtsp;
#ifdef RTSPdataRtsp["path"]="mem://test";dataRtsp["format"]="rtsp";
#elif UDPdataRtsp["path"]="mem://test";dataRtsp["format"]="mpegts";
#elif RTMPdataRtsp["path"]="rtmp://127.0.0.1/live/test";dataRtsp["format"]="flv";
#endifdataRtsp["mute"]=true;mux->start(dataRtsp);#ifdef RTSPLinkObject *rtspServer=Link::create("Rtsp");rtspServer->start();vi->linkV(encV)->linkV(mux)->linkV(rtspServer);
#elif UDPLinkObject *udp=Link::create("TSUdp");QVariantMap dataUDP;dataUDP["ip"]="192.168.1.77";dataUDP["port"]=1234;udp->start(dataUDP);vi->linkV(encV)->linkV(mux)->linkV(udp);
#elif RTMPvi->linkV(encV)->linkV(mux);
#endifreturn a.exec();

解码端源程序

完整的工程参见:https://gitee.com/LinkPi/3531D/tree/master/LowLatencyDEC

//main.cpp
#include <QCoreApplication>
#include "Link.h"#define RTSP
//#define UDP
//#define RTMPint main(int argc, char *argv[])
{QCoreApplication a(argc, argv);Link::init();LinkObject *vo=Link::create("OutputVo");QVariantMap dataVo;dataVo["type"]="hdmi";vo->start(dataVo);LinkObject *net=Link::create("InputNet");QVariantMap dataNet;
#ifdef RTSPdataNet["path"]="rtsp://192.168.1.76/test";
#elif UDPdataNet["path"]="udp://@:1234";
#elif RTMPdataNet["path"]="rtmp://192.168.1.76/live/test";
#endifdataNet["protocol"]="udp";dataNet["buffer"]=false;dataNet["sync"]=false;net->start(dataNet);LinkObject *dec=Link::create("DecodeV");QVariantMap dataDec;dataDec["lowLatency"]=true;dec->start(dataDec);net->linkV(dec)->linkV(vo);return a.exec();
}

抓拍的图片序列

为了方便阅读,我们这里对每一种网络协议抓拍到的图片展示三幅图,若需要查看全部的图,请到网盘下载。

1.TS over UDP

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.RTSP over UDP

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.RTMP

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

从以上评测数据来看,海思芯片不愧称的上是业内领头羊,ENC5完美的发挥了它的优势性能。希望这篇文章能给大家技术上的指引,谢谢大家能看完本文,还请轻台贵手,多多点赞和支持,关注我哦!

这篇关于未来5G编码器之海思小于100毫秒低延迟直播方案评测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391816

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea