大数据支持的数据集洞见-医疗-心率和呼吸分类(一)

2023-11-11 12:10

本文主要是介绍大数据支持的数据集洞见-医疗-心率和呼吸分类(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、数据集

本次心率数据在少量设备情况下,在几天的数据量已经达到了上几百万数据,如何从中找到有用的,并且规划出元数据来进行实验和分析是最终目的。需要做的是:
1 数据清除
2 数据规划元数据
3 数据分析和洞见
4 实验

前面很多文章和实验都表明我们要制作一个数据集是非常困难的,数据库里面的数据只是一个存储集合,谈不上大数据集合。如下表所示,将数据集导入csv文件,并做过滤
在这里插入图片描述
我们的数据集和应将type类型变为元数据字段:
1 心率
2 呼吸
3 安静系数
4 是否辗转
最后一个是结果

心率呼吸安静系数是否辗转结果
67143500
64133510
561214611

1.2 心率和呼吸以及安静系数的关系

1 呼吸渐渐缓和,安静系统线性提高,心率降低,表明即将入睡,但是入睡的点并不是非常精确的,无论是"熟睡",“浅睡”,都是我们自己的定义,偏差依理解不同,但误差并不会很多。
2 呼吸增多,安静系数降低,心率缓慢增加,辗转发生,表示出睡,这是我自己的定义,但并不表示就是一定醒过来。

1.3 使用线性分类实验

import numpy as np
import sklearn.cluster as sc
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import svm
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler            # 导入sklearn包的相应模块
# 安静系数 心率均值
X = np.array([[35,64], [53,67],[120,70],[150,67],[178,54]])
Y = np.array([0,0,0,1,1])clf = Pipeline((("scaler",StandardScaler()),("linear_svc",svm.LinearSVC(C=1,loss="hinge")),
))
clf.fit(X,Y)
print (clf.predict([[123,62]]))     
print (clf.predict([[135,52]]))     
print (clf.predict([[140,52]]))     
print (clf.predict([[110,60]]))    
print (clf.predict([[120,60]])) 
print (clf.predict([[35,60]])) 

结果如下:
(base) python testheart.py
[1]
[1]
[1]
[1]
[1]
[0]
svc
可见线性分类在数据量非常小的情况下没有非常好的明确的界限,最后一个值因远低于均值,所以被分类为零。

1.3 使用svc和svr

import numpy as np
import sklearn.cluster as sc
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import svm
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler            # 导入sklearn包的相应模块
#安静系数 心率均值
X = np.array([[35,64], [53,67],[120,70],[150,67],[178,54]])
Y = np.array([0,0,0,1,1])clf = Pipeline((("scaler",StandardScaler()),("linear_svc",svm.LinearSVC(C=1,loss="hinge")),
))
clf.fit(X,Y)
print (clf.predict([[123,62]]))     
print (clf.predict([[135,52]]))     
print (clf.predict([[140,52]]))     
print (clf.predict([[110,60]]))    
print (clf.predict([[120,60]])) 
print (clf.predict([[35,60]])) print("svc\n")
clf = svm.SVC()                    
clf.fit(X,Y)
print (clf.predict([[123,62]]))     
print (clf.predict([[135,52]]))     
print (clf.predict([[140,52]]))     
print (clf.predict([[110,60]]))    
print (clf.predict([[120,60]]))    
#print (clf.support_vectors_)       # 查看支持向量
#print (clf.support_)               # 查看支持向量类别
#print (clf.n_support_)             # 查看每个类别支持向量个数clf=svm.SVR()print("svr\n")
clf.fit(X,Y)
print (clf.predict([[123,62]]))     
print (clf.predict([[135,52]]))     
print (clf.predict([[140,52]]))     
print (clf.predict([[110,60]]))    
print (clf.predict([[120,60]])) 

结果
(base) python testheart.py
[1]
[1]
[1]
[1]
[1]
[0]
svc

[0]
[1]
[1]
[0]
[0]
svr

[0.26229048]
[0.47259546]
[0.55099675]
[0.09001326]
[0.2214764]

可见svc方法的结果和输入的值非常符合,但svc基于libsvm, 训练复杂度较高,数据量变大时,速度和效率会下降很多。而svr也是和svc类似,数据比较符合,但训练复杂度较高。

2、结论

1 、在大数据下,需要更多地仔细观察数据,梳理数据,并且输出更多的小数据集,在大量的实验下得出结论

这篇关于大数据支持的数据集洞见-医疗-心率和呼吸分类(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389977

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指