算法笔记——左神进阶(4)平衡搜索二叉树、累加和为定值最长子数组

本文主要是介绍算法笔记——左神进阶(4)平衡搜索二叉树、累加和为定值最长子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搜索二叉树

搜索二叉树:对于搜索二叉树的任何一个节点,左子树的值都比节点小,右子树的值都比他大。
TreeMap中,跟HashMap中一样可以提供key-value,同时会将key按照大小顺序排列。中间采用的就是搜索二叉树的知识。

具备平衡性的搜索二叉树:

AVL树——平衡性最严格

任何一个节点的左子树和右子树高度差不大于1,复杂度还是O(logN)。导致调整非常频繁。

红黑树——平衡性要求不严格

每个节点染上色,头和叶节点必然黑,相邻两个节点不能出现连续的红节点,任何一条链,黑色节点个数相差不超过1.所以任何一条链的最长链和最短链的高度差不超过1倍。


搜索二叉树添加平衡性

对于搜索二叉树中的平衡性,都是针对二叉树进行左旋或右旋的调整,不同的搜索二叉树只是针对于左旋和右旋的动作组合。将整个搜索二叉树进行高度的调整,使其实现平衡性。

AVL发现不平衡的机制:

当二叉树进行删除和添加的时候,可能导致二叉树不平衡。
添加或删除时:对于整个二叉树而言存在添加数的时候除了添加节点信息以外,还需要添加左子树和右子树的最大高度信息,当插入一个值的时候,如果树的某一子树高度发生改变,则此时会对父节点存储的最大高度的信息进行更新,会 一直更新到跟节点,然后依次判断高度是否一致或最多相差1,如果不满足,则此时发生左旋或右旋的操作,使其实现平衡。

调整组合类型:LL,RR,LR,RL

LL(左边的左边较长):此时简单进行一个向右就可以
RR(右边的右边较长):此时简单进行一个左旋就可以
RL(右边的左边较长):首先将右边的左边节点变成父节点,然后进行右旋
LR(左边的右边较长):首先将左边的右边节点变成父节点,然后再进行左旋

注意这一部分主要是理解和使用,暂时不用扣代码
AVL树调整平衡性代码

AVL树继承了原本的node类型,但是增加了一个height。

public void rebalance(AVLNode node){   //插入一个新的节点,判断不平衡while(node != null){Node parent = node.parent; int leftHeight = (node.left == null)? -1:((AVLNode) node.left).height;  //把左子树的高度拿过来int rightHeight = (node.right == null) ? -1 : ((AVLNode)node.right).height;int nodeBalance = rightHeight -leftHeight; //高度差if(nodeBalance == 2){ //右树超了if(node.right.right != null){node = (AVLNode)avlRotateLeft(node);break;}else{node = (AVLNode)doubleRotateRightLeft(node);break;}//此时为左树超了}else if(nodeBalance == -2){此判断是LL型if(node.left.left != null){//此时只进行一个右旋的操作node = (AVLNode)avlRotateRight(node);break;}else{node = (AVLNode)doubleRotateLeftRight(node);break;}}else{updateHeight(node);}node = (AVLNode)parent; //往父节点窜}
}
//确立这棵树的高度,从node开始就从本节点开始依次向上调整看是否平衡,
private static final void updateHeight(AVLNode node){int leftHeight = (node.left == null) ? -1:((AVLNode) node.left).height;int rightHeight = (node.right == null) ? -1:((AVLNode) node.right).height;//看左树和右树的高度更高的+1,就是这棵树的高度node.height = 1+ Math.max(leftHeight,rightHeight);
}

题目1:

在这里插入图片描述
【思路】

  1. 将每一个矩阵进行拆分,第一个【1,3,3】拆分为(1,3,上)和(3,3,下);第二个拆分成(2,4,上)和(4,4,下);第三个拆分成(5,1,上)和(6,1,下)
  2. 将位置按照从小到大进行排序,轮廓的变化意味着最大高度发生变化了;较低的高度被较高的高度进行覆盖,覆盖住之后此时出现轮廓。
  3. 建立一张treeMap,将大楼信息拆分成两个,一方面是位置,高度,增加,另一个是位置,高度,减少。此时在map中保存key为某一个高度的高度线,value为某一个高度有几条。
  4. 在遍历整个矩阵过程中,在treeMap中新建节点,此时可以知道最大高度是否发生变化,从而确定当前位置是否产生轮廓。只要上就增加,下就减少,所以,当过了一个矩阵的时候,此时次数信息为0,此时将对应节点删除。

【代码】
关键是最大高度的变化

//Node格式与内容
public static class Node{public boolean be;public int p;public int h;public Node(boolean boRe,int position,int height){be = bORe;     //是上还是下p = position;  //在哪个位置h = height;   //高度}
}//定义比较器
public static class NodeComparator implements Comparator<Node> {@Overridepublic int compare(Node o1,Node o2){if(o1.p != o2.p){  //按位置排序return o1.p-o2.p;}if(o1.be != o2.be){return o1.be ? -1:1;}return 0;}
}public static List<List<Integer>> buildingOutline(int[][] buildings){Node[] nodes = new Node[buildings.length *2];for(int i =0;i<buildings.length;i++){//在放置的时候,将向上的信息和向下的信息收集nodes[i *2] = new Node(true,buildings[i][0],building[i][2]);nodes[i*2+1] = new Node(false,buildings[i][1],buildings[i][2]);}//按照严格的位置排序Arrays.sort(nodes,new NodeComparator());  //htMap进行标记最大高度信息,pmMap记录每一个位置冲到的最大高度//key为高度信息,value是出现次数TreeMap<Integer,Integer> htMap = new TreeMap<>();  //key是位置,遍历pmMap时,会严格按照key升序TreeMap<Integer,Integer> pmMap = new TreeMap<>();for(int i = 0;i<nodes.length;i++){//进行向上还是向下的判断if(nodes[i].be){  //代表向上//如果高度第一次出现,则将当前节点放入if(!htMap.containsKey(nodes[i].h)){htMap.put(nodes[i].h,1);}else{//如果之前出现过,则此时将出现次数+1htMap.put(nodes[i].h,htMap.get(nodes[i].h)+1);}}else{//此时是向下的情况if(htMap.containsKey(nodes[i].h)){//如果现在的高度是1,再减去1,所以需要将现在的节点移除if(htMap.get(nodes[i].h) == 1){htMap.remove(nodes[i].h);}else{//高度大于1,则此时将高度减一htMap.put(nodes[i].h,htMap.get(nodes[i].h)-1);}}}if(htMap.isEmpty()){pmMap.put(nodes[i].p,0);}else{pmMap.put(nodes[i].p,htMap.lastKey());}}List<List<Integer>> res = new ArrayList<>();int start = 0;int height = 0;//因为为treeMap,所以拿出当前位置时是升序排列的for(Entry<Integer,Integer> entry : pmMap.entrySet()){int curPosition = entry.getKey();int curMaxHeight = entry.getValue();//如果之前的高度跟新拿出的高度不同,则意味着此时要生成轮廓线if(height != curMaxHeight){//如果之前的高度为0,则意味着此时开启新的轮廓线,此时跳过if,直接设置起始位置和height//高度不同,也不为0,则也会设置起始位置和heightif(height != 0){//形成整个轮廓线List<Integer> newRecord = new ArrayList<Integer>();newRecord.add(start);newRecord.add(curPosition);newRecord.add(height);res.add(newRecord);}start = curPosition;height = curMaxheight;}}return res;
}

题目2:

给定一个数组arr,数组中有0,正值和负值,给定一个aim值,求累加和为给定值的最长子数组。
一旦出现连续的子数组,子串之类的题,一旦求出必须以每个位置数截止的最长子数组,最长的子数组必定在其中

【思路】
使用sum表示从0位置开始累加到当前位置的所有数目的和,在以当前位置结尾时,此时计算从0开始累加到哪个位置最早出现sum-aim,这代表从该位置到当前位置的和位aim。此时的数组为以当前位置结尾的最长子数组,然后当前位置++,再次计算。

【代码】注意!!! -1位置的累加和为0,一定要加上。 否则会漏掉从第一个数开始的子数组。

public static int maxLength(int[] arr,int aim){if(arr == null || arr.length == 0){return 0;}HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();map.put(0,-1);int len = 0;int sum = 0;for(int i = 0;i< arr.length; i++){sum += arr[i];if(map.containsKey(sum-aim)){len = Math.max(i-map.get(sum-aim),len);}if(!map.containsKey(sum)){map.put(sum,i);}}return len;
}

题目3:

一个整数数组中,求数组中奇数和偶数数目相等的最长子数组

【思路】跟题目2类似,只需要将奇数变成1,偶数变成-1,使得aim等于0,由题目2解法就得到了相应的结果。

类似题目:一个数组只有0、1、2,求1和2数量相等的最长子数组,把2替换成-1,求aim等于0的最长子数组即可。

这篇关于算法笔记——左神进阶(4)平衡搜索二叉树、累加和为定值最长子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384041

相关文章

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis