如何选择一个向量数据库|Qdrant Cloud v.s. Zilliz Cloud

2023-11-10 14:45

本文主要是介绍如何选择一个向量数据库|Qdrant Cloud v.s. Zilliz Cloud,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着向量数据库的热度不断攀升,越来越多人开始关注到这一赛道,传统数据库和检索系统也在快速集成专门的向量检索插件方面展开角逐。Qdrant 因其易用性和用户友好的开发者文档,面世不久即获得关注。

Qdrant 以 Rust 语言构建,提供 Rust、Python、Golang 等客户端 API,能够满足当今主流开发人员的需求。不过, Qdrant 作为后起之秀,和其他竞品仍然存在一定差距,例如界面及查询功能不够完善。

那么,Qdrant 和 Zilliz Cloud/Milvus 有何不同?可以这样理解,二者都专为向量数据打造,但适用于不同场景。Qdrant 更适合追求低成本基础设施维护的开发人员。而如果应用系统更注重性能和可扩展性,Zilliz Cloud/Milvus 是更合适的选择。因为 Zilliz Cloud/Milvus 具备可扩展性极强、性能更佳、延时更低的特点,适用于对性能指标有着严格要求的场景。

本文中将撇开这些表面差异,通过比较二者的性能基准测试结果和 Qdrant Cloud 的相关特性,深入探究 Qdrant Cloud 和 Zilliz Cloud 的差异。

01.Qdrant Cloud v.s. Zilliz Cloud:性能大比拼

最近,随着检索增强生成系统(RAG)的持续火爆,开发者对于“如何选择一个向量数据库”的疑惑也越来越多。过去几周,我们从性能和特性能力两个方面对 Qdrant Cloud 和 Zilliz Cloud 进行了详细的对比。

在对比过程中,我们使用了开源的性能基准测试套件 VectorDBBench,围绕诸如每秒查询次数(QPS)、每美元查询次数(QP$)以及时延等关键指标展开测试。

【大型测试数据集(≥ 500 万向量数据)】

以下为测试中使用的两类数据集:

  • 数据集 1 包含 10,000,000 条 768 维的向量数据。

  • 数据集 2 包含 5,000,000 条 1,536 维的向量数据。

测试对象

以下为测试时使用的实例,这些实例在硬件配置上基本相近:

  • Zilliz Cloud (8cu-perf):Zilliz Cloud 8 CU 性能型实例

  • Zilliz Cloud (2cu-cap):Zilliz Cloud 2 CU 容量型实例

  • Qdrant Cloud (4c16g-5node): Qdrant Cloud 4 CPU 16G 内存,使用 5 台机器的实例

每秒查询次数(QPS)

测试结果显示,在 10,000,000 条 768 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 QPS 分别是 Qdrant Cloud 实例的 7 倍和 1 倍。

alt

在 5,000,000 条 1,536 维的向量数据中进行检索时,Zilliz Cloud(8cu-perf) 实例的 QPS 是 Qdrant Cloud 实例的 8 倍,但 Zilliz Cloud (2cu-cap) 实例的 QPS 低于 Qdrant Cloud 实例。

alt
每美元查询次数(QP$)

在 10,000,000 条 768 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 QP$ 分别是 Qdrant Cloud 实例的 8 倍和 5 倍。

alt

在 5,000,000 条 1,536 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 QP$ 分别是 Qdrant Cloud 实例的 7 倍和 3 倍。

alt
时延

在 10,000,000 条 768 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 P99 延时分别是 Qdrant Cloud 实例的 1/12 倍和 1/3 倍。

alt

在 5,000,000 条 1,536 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 P99 时延分别比 Qdrant Cloud 实例快 8 倍和 1 倍。

alt

【中型测试数据集(< 500 万向量数据)】

以下为测试中使用的两类数据集:

  • 数据集 3 包含 1,000,000 条 768 维的向量数据。

  • 数据集 4 包含 500,000 条1,536 维的向量数据。

测试对象

以下为测试时使用的实例,这些实例在硬件配置上基本相近:

  • Zilliz Cloud (1cu-perf):Zilliz Cloud 1 CU 性能型实例

  • Zilliz Cloud (1cu-cap):Zilliz Cloud 1 CU 容量型实例

  • Qdrant Cloud (4c16g-1node): Qdrant Cloud 4 CPU 16G 内存,使用 1 台机器的实例

每秒查询次数(QPS)

测试结果显示,在 1,000,000 条 768 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 QPS 分别是 Qdrant Cloud 实例的 2 倍和 1 倍。

alt

在 500,000 条 1,536 维的向量数据中进行检索时,Zilliz Cloud(1cu-perf) 实例的 QPS 是 Qdrant Cloud 实例的 2 倍,但 Zilliz Cloud (1cu-cap) 实例的 QPS 低于 Qdrant Cloud 实例。

alt
每美元查询次数(QP$)

在 1,000,000 条 768 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 QP$ 分别是 Qdrant Cloud 实例的 4 倍和 2 倍。

alt

在 500,000 条 1,536 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 QP$ 分别是 Qdrant Cloud 实例的 3 倍和 1 倍。

alt
时延

在 1,000,000 条 768 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 P99 时延均比 Qdrant Cloud 实例快 2 倍。

alt

在 500,000 条 1,536 维的向量数据中进行检索时,Zilliz Cloud 两款实例的 P99 时延分别是 Qdrant Cloud 实例的 127 倍和 27 倍。

alt

【结果:综合评分】

alt
alt

上图展示了各实例在不同用例下的性能评分(百分制)情况,分数越高,性能越强。具体的评分标准可以参考此处

https://github.com/zilliztech/VectorDBBench/tree/main#leaderboard。

alt

上图展示了各实例在不同用例(https://zilliz.com/vector-database-benchmark-tool#comparison-section)下的性能评分(>1) 情况,分数越低,性能越强。

上述性能基准测试结果由开源的 VectorDBBench(https://github.com/zilliztech/VectorDBBench) 工具提供。在工具的 GitHub 主页上,还可以看到向量数据库的排行榜。VectorDBBench 为主流的向量数据库和相关云服务提供了公正的性能测试基准(https://zilliz.com.cn/benchmark)。该工具有着良好的易用性,可以轻而易举地在众多向量数据库云服务和开源向量数据库中找到最佳选择。

02.Qdrant Cloud 特性对比

随着向量数据库可以存储的数据量呈几何级数的增长,性能也成为了向量数据库的重大挑战。为了保障数据检索性能,数据库的跨节点横向扩展能力至关重要。另外,数据插入速率、检索速率以及底层硬件的不同可能会衍生出不同的应用需求,这也让全局参数调节能力成为向量数据库的必备能力之一。

向量数据库为何而生

向量数据库是用来存储通过机器学习模型生成的非结构化数据的向量表示,为其创建索引,并在其中进行检索的一套全托管解决方案。它应该提供如下特性:

  • 可扩展性和参数调节能力

  • 多租户和数据隔离

  • 完整的 API 套件

  • 直观的用户界面和控制台

可扩展性
alt
功能
alt
专门打造
alt

关于更多详情,请参见比较页面(https://zilliz.com.cn/comparison/milvus-vs-qdrant)。

本文由 mdnice 多平台发布

这篇关于如何选择一个向量数据库|Qdrant Cloud v.s. Zilliz Cloud的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/383355

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Python+PyQt5实现MySQL数据库备份神器

《Python+PyQt5实现MySQL数据库备份神器》在数据库管理工作中,定期备份是确保数据安全的重要措施,本文将介绍如何使用Python+PyQt5开发一个高颜值,多功能的MySQL数据库备份工具... 目录概述功能特性核心功能矩阵特色功能界面展示主界面设计动态效果演示使用教程环境准备操作流程代码深度解

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

Spring Cloud GateWay搭建全过程

《SpringCloudGateWay搭建全过程》:本文主要介绍SpringCloudGateWay搭建全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Spring Cloud GateWay搭建1.搭建注册中心1.1添加依赖1.2 配置文件及启动类1.3 测

MySQL Workbench工具导出导入数据库方式

《MySQLWorkbench工具导出导入数据库方式》:本文主要介绍MySQLWorkbench工具导出导入数据库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录mysql Workbench工具导出导入数据库第一步 www.chinasem.cn数据库导出第二步

Mysql数据库中数据的操作CRUD详解

《Mysql数据库中数据的操作CRUD详解》:本文主要介绍Mysql数据库中数据的操作(CRUD),详细描述对Mysql数据库中数据的操作(CRUD),包括插入、修改、删除数据,还有查询数据,包括... 目录一、插入数据(insert)1.插入数据的语法2.注意事项二、修改数据(update)1.语法2.有