大数据毕业设计选题推荐-农作物观测站综合监控平台-Hadoop-Spark-Hive

本文主要是介绍大数据毕业设计选题推荐-农作物观测站综合监控平台-Hadoop-Spark-Hive,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着科技的发展和全球气候变化的挑战,农业生产的效率和可持续性越来越受到人们的关注。为了提高农业生产的效率和可持续性,需要进行长期的的农作物观测和监控。传统的农作物观测站通常需要大量的人力物力进行维护,而且受到时间和空间的制约,无法做到实时的观测和监控。因此,基于大数据的农作物观测站监控平台的研究和应用,对于提高农作物观测和监控的效率和可持续性具有重要的意义。

目前,农作物观测站的数据采集和监控主要依靠人工操作,不仅需要大量的人力物力,而且受到时间和空间的制约,无法做到实时的观测和监控。同时,由于农作物生长受到多种因素的影响,包括气候、土壤、病虫害等,因此需要更加齐全、精细的数据采集和监控。但是,现有的解决方案无法满足这一需求,因此需要一种基于大数据的农作物观测站监控平台来解决这个问题。

本课题的研究目的是开发一种基于大数据的农作物观测站监控平台,实现以下功能:
农气站在线情况:监控农气站的运行状态,包括在线和离线状态,以及离线原因。
观测作物分类统计:对观测的作物进行分类统计,包括作物种类、生长情况、产量预测等。
离线站点清单:列出所有离线的站点,包括站点名称、位置、离线时间等。
站点实时数据:实时采集站点的数据,包括气候数据、土壤数据、病虫害数据等。
站点实时监控图片数据:实时采集站点的监控图片,包括作物生长情况、病虫害情况等。

本课题的研究意义在于提高农作物观测和监控的效率和可持续性,为农业生产提供更加精细的数据支持,有助于提高农业生产的效率和可持续性。同时,本课题的研究成果也可以为其他领域的数据采集和监控提供参考和借鉴。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 基于大数据的农作物观测站综合监控平台界面展示:
    基于大数据的农作物观测站综合监控平台
    基于大数据的农作物观测站综合监控平台-农气站在线情况
    基于大数据的农作物观测站综合监控平台-观测作物分类统计
    基于大数据的农作物观测站综合监控平台-观测站地图
    基于大数据的农作物观测站综合监控平台-站点历史记录
    基于大数据的农作物观测站综合监控平台-站点历史监控图片

四、部分代码设计

  • 大数据项目实战-代码参考:
body = {}
semaphore = threading.Semaphore(0)
def value_1():while True:time.sleep(2)localtime = time.time()global bodyvalue = uart.uart_read()value_send = float(value)body = {"datastreams": [{"id": "temperature",  # 对应OneNet的数据流名称"datapoints": [{"value": value_send  # 数据值}]}]}link_db.sql_insert(localtime, value_send)print("接受的数据(%.1f)" % value_send)semaphore.release()def build_payload(type, payload):datatype = typepacket = bytearray()packet.extend(struct.pack("!B", datatype))if isinstance(payload, str):udata = payload.encode('utf-8')length = len(udata)packet.extend(struct.pack("!H" + str(length) + "s", length, udata))return packet# 当客户端收到来自服务器的CONNACK响应时的回调。也就是申请连接,服务器返回结果是否成功等
def on_connect(client, userdata, flags, rc):print("连接结果:" + mqtt.connack_string(rc))# 上传数据global bodyjson_body = json.dumps(body)print(json_body)packet = build_payload(TYPE_JSON, json_body)client.publish("$dp", packet, qos=1)  # qos代表服务质量# 当消息已经被发送给中间人,on_publish()回调将会被触发
def on_publish(client, userdata, mid):print("回调次数" + str(mid))def mqtt_up_main():semaphore.acquire()client = mqtt.Client(client_id=DEV_ID, protocol=mqtt.MQTTv311)client.on_connect = on_connectclient.on_publish = on_publishclient.on_message = on_messageclient.username_pw_set(username=PRO_ID, password=AUTH_INFO)client.connect('183.230.40.39', port=6002, keepalive=120)  # 端口、ip地址、生存期client.loop_forever()time.sleep(1)if __name__ == '__main__':while True:# link_db.sql_create_db()t1 = threading.Thread(target=value_1, args=())t2 = threading.Thread(target=mqtt_up_main, args=())t1.start()t2.start()t1.join()t2.join()time.sleep(3)

五、论文参考

  • 计算机毕业设计选题推荐-基于大数据的农作物观测站综合监控平台-论文参考:
    计算机毕业设计选题推荐-基于大数据的农作物观测站综合监控平台-论文参考

六、系统视频

基于大数据的农作物观测站综合监控平台-项目视频:

大数据毕业设计选题推荐-农作物观测站监控平台-Hadoop

结语

大数据毕业设计选题推荐-农作物观测站综合监控平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

这篇关于大数据毕业设计选题推荐-农作物观测站综合监控平台-Hadoop-Spark-Hive的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377390

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

macOS彻底卸载Python的超完整指南(推荐!)

《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很