二分图的最大匹配 ————匈牙利算法 (转载了一个大神的趣味算法) poj3041(Asteroids)

本文主要是介绍二分图的最大匹配 ————匈牙利算法 (转载了一个大神的趣味算法) poj3041(Asteroids),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。

-------等等,看得头大?那么请看下面的版本:

通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,M个剩女,每个人都可能对多名异性有好感(惊讶-_-||暂时不考虑特殊的性取向),如果一对男女互有好感,那么你就可以把这一对撮合在一起,现在让我们无视掉所有的单相思(好忧伤的感觉快哭了),你拥有的大概就是下面这样一张关系图,每一条连线都表示互有好感。


本着救人一命,胜造七级浮屠的原则,你想要尽可能地撮合更多的情侣,匈牙利算法的工作模式会教你这样做:

===============================================================================

先试着给1号男生找妹子,发现第一个和他相连的1号女生还名花无主,got it,连上一条蓝线


===============================================================================

接着给2号男生找妹子,发现第一个和他相连的2号女生名花无主,got it


===============================================================================

接下来是3号男生,很遗憾1号女生已经有主了,怎么办呢?

我们试着给之前1号女生匹配的男生(也就是1号男生)另外分配一个妹子。

(黄色表示这条边被临时拆掉)

与1号男生相连的第二个女生是2号女生,但是2号女生也有主了,怎么办呢?我们再试着给2号女生的原配(发火发火)重新找个妹子(注意这个步骤和上面是一样的,这是一个递归的过程)


此时发现2号男生还能找到3号女生,那么之前的问题迎刃而解了,回溯回去

2号男生可以找3号妹子~~~                  1号男生可以找2号妹子了~~~                3号男生可以找1号妹子

所以第三步最后的结果就是:


===============================================================================

接下来是4号男生,很遗憾,按照第三步的节奏我们没法给4号男生出来一个妹子,我们实在是无能为力了……香吉士同学走好。

===============================================================================

这就是匈牙利算法的流程,其中找妹子是个递归的过程,最最关键的字就是“ ”字

其原则大概是:有机会上,没机会创造机会也要上

bool find(int x){int i,j;for (j=1;j<=m;j++){    //扫描每个妹子if (line[x][j]==true && used[j]==false)      //如果有暧昧并且还没有标记过(这里标记的意思是这次查找曾试图改变过该妹子的归属问题,但是没有成功,所以就不用瞎费工夫了){used[j]=1;if (girl[j]==0 || find(girl[j])) { //名花无主或者能腾出个位置来,这里使用递归girl[j]=x;return true;}}}return false;
}

在主程序我们这样做:每一步相当于我们上面描述的一二三四中的一步

for (i=1;i<=n;i++)
{memset(used,0,sizeof(used));    //这个在每一步中清空if find(i) all+=1;
}









Asteroids
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 20234 Accepted: 10971

Description

Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid.

Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.

Input

* Line 1: Two integers N and K, separated by a single space.
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.

Output

* Line 1: The integer representing the minimum number of times Bessie must shoot.

Sample Input

3 4
1 1
1 3
2 2
3 2

Sample Output

2

Hint

INPUT DETAILS:
The following diagram represents the data, where "X" is an asteroid and "." is empty space:
X.X
.X.
.X.


OUTPUT DETAILS:
Bessie may fire across row 1 to destroy the asteroids at (1,1) and (1,3), and then she may fire down column 2 to destroy the asteroids at (2,2) and (3,2).

Source

思路:

将每行、每列分别看作一个点,对于case的每一个行星坐标(x,y),将第x行和第y列连接起来,例如对于输入:

(1,1)、(1,3)、(2,2)、(3,2)4点构造图G:


这样,每个点就相当于图G的一条边,消灭所有点=消灭图G的所有边,又要求代价最少,即找到图G上的最少的点使得这些点覆盖了所有边。

根据定理吗, 最小点覆盖数=最大匹配数,所以本题转化为二分图的最大匹配问题——用匈牙利算法来解决。

推荐一个好的讲解匈牙利算法的博文:《趣写算法系列之--匈牙利算法》

解题思路:

把方阵看做一个特殊的二分图(以行列分别作为两个顶点集V1、V2,其中| V1|=| V2|)

然后把每行x或者每列y看成一个点,而障碍物(x,y)可以看做连接x和y的边。按照这种思路构图后。问题就转化成为选择最少的一些点(x或y),使得从这些点与所有的边相邻,其实这就是最小点覆盖问题。

 

再利用二分图最大匹配的König定理:

最小点覆盖数 = 最大匹配数

 

PS:最小点覆盖:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖图的所有的边。)

 

因此本题自然转化为求 二分图的最大匹配 问题

 

 

求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的时间复杂度为边数的指数级函数

因此,需要寻求一种更加高效的算法——增广路求最大匹配的方法(匈牙利算法)

 

增广路的定义(也称增广轨或交错轨):

P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。

 

 由增广路的定义可以推出下述三个结论:

1、P的路径个数必定为奇数,第一条边和最后一条边都不属于M。

2、将M和P进行取反操作可以得到一个更大的匹配M’

   (反操作:把P中的 匹配边 与 非匹配边 互换)

3、M为G的最大匹配当且仅当不存在M的增广路径P

 

 匈牙利算法轮廓:

(1)置M为空

(2)找出一条增广路径P,通过异或操作获得更大的匹配M’代替M

(3)重复(2)操作直到找不出增广路径为止



#include<iostream>
#include<fstream>using namespace std;int n, k;
int v1, v2;//二分图顶点集,都等于n
bool map[501][501];
bool visit[501]; //记录v2中的每个点是否被搜索过
int link[501]; //记录v2中的点y在v1中所匹配的点x的编号int result;//最大匹配数bool dfs(int x)
{for (int y = 1; y <= v2; y++){if (map[x][y] && !visit[y]){visit[y] = true;if (link[y] == 0 || dfs(link[y])){link[y] = x;return true;}}}return false;
}//匈牙利算法hungary algorithm
void search()
{for (int x = 1; x <= v1; x++){memset(visit,false,sizeof(visit));if (dfs(x)) //从v1中的节点x开始寻找增广路径presult++;}
}int main()
{//ifstream in("input.txt");cin >> n >> k;v1 = v2 = n;int x, y;memset(map,0,sizeof(map));for (int i = 1; i <= k; i++){cin >> x >> y;map[x][y] = true;}search();cout << result << endl;//system("pause");return 0;
}




这篇关于二分图的最大匹配 ————匈牙利算法 (转载了一个大神的趣味算法) poj3041(Asteroids)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377000

相关文章

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.