深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】

2023-11-09 05:44

本文主要是介绍深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 深度学习理论知识入门
        • 首先,让我们了解第一个流程:
        • 现在,让我们看看第二个流程:
    • EM算法
    • GMM(高斯混合模型)

深度学习理论知识入门


首先,让我们了解第一个流程:

EM(Expectation-Maximization):EM算法是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。

VAE(Variational Autoencoder):VAE是一种生成模型,结合了自动编码器和变分推断的概念。它可以学习数据的潜在表示,并生成与原始数据相似的新样本。

GAN(Generative Adversarial Networks):GAN是一种生成模型,由生成器和判别器组成。生成器试图生成逼真的样本,而判别器则试图区分生成的样本和真实样本。通过对抗训练,生成器和判别器相互竞争,最终生成器可以生成更逼真的样本。

现在,让我们看看第二个流程:

采样:在机器学习中,采样通常指从概率分布中抽取样本。通过采样,我们可以生成符合给定分布的样本。

RBM(Restricted Boltzmann Machine):RBM是一种基于能量的神经网络模型,用于学习数据的概率分布。它是一种受限制的玻尔兹曼机,其中神经元之间存在限制条件。

MCMC(Markov Chain Monte Carlo):MCMC是一种采样方法,用于从复杂的概率分布中抽取样本。它利用马尔科夫链的性质,通过迭代过程生成样本。

HMC(Hamiltonian Monte Carlo):HMC是一种MCMC方法的变体,通过模拟物理系统中的哈密顿动力学来生成样本。它可以更有效地探索高维空间中的分布。


EM算法

EM算法(Expectation-Maximization)是一种迭代优化算法,用于在存在潜在变量的统计模型中进行参数估计。它通过交替的E步骤(Expectation,期望)和M步骤(Maximization,最大化)来最大化似然函数。下面我将简要推导EM算法,并提供一个应用的示例。

假设我们有一组观测数据X和一组对应的未观测的潜在变量Z。我们希望通过最大似然估计来估计模型的参数θ。然而,由于存在未观测的潜在变量Z,直接求解似然函数可能会非常困难。

EM算法通过引入潜在变量的期望值来简化问题。其基本思想是,在每次迭代中,通过已知的参数值计算出潜在变量的期望值(E步骤),然后用这些期望值来最大化完全数据的似然函数(M步骤)。这个过程不断迭代,直到收敛到一个局部最优解。

下面是EM算法的推导过程:

初始化参数θ的值。

E步骤(Expectation):计算在给定参数θ下,完全数据的潜在变量Z的条件概率分布P(Z|X, θ)。这个步骤计算出每个样本的潜在变量的期望值。

M步骤(Maximization):最大化完全数据的对数似然函数,得到新的参数估计值θ。这个步骤使用E步骤中计算得到的潜在变量的期望值。

重复步骤2和步骤3,直到收敛或达到最大迭代次数。

现在,让我们通过一个简单的高斯混合模型的例子来说明EM算法的应用。

假设我们观测到一组由两个高斯分布生成的一维数据。我们的目标是使用EM算法来估计这两个高斯分布的均值和方差。

初始化参数:随机初始化两个高斯分布的均值和方差。

E步骤(Expectation):对于每个观测数据,计算其属于每个高斯分布的概率。这可以使用贝叶斯定理和当前参数值计算得到。

M步骤(Maximization):使用E步骤中计算得到的数据点的分配概率,更新高斯分布的均值和方差。

重复步骤2和步骤3,直到参数收敛或达到最大迭代次数。

通过迭代E步骤和M步骤,EM算法将逐渐优化均值和方差的估计,使其更好地拟合观测数据。

这只是EM算法的简单示例,实际应用中可能涉及更复杂的模型和参数。然而,这个例子希望能够帮助您理解EM算法的基本原理和应用过程。


GMM(高斯混合模型)

当涉及到使用EM算法的实际例子时,一个经典的案例是高斯混合模型(Gaussian Mixture Model,GMM)。下面是使用Python和PyTorch库实现GMM的示例代码:

import torch
from torch.distributions import Normal, Categorical# 生成一些示例数据
torch.manual_seed(42)
num_samples = 1000
true_means = torch.tensor([-1.0, 1.0])
true_stddevs = torch.tensor([0.5, 0.8])
true_weights = torch.tensor([0.4, 0.6])
true_distribution = Categorical(true_weights)
true_component_indices = true_distribution.sample((num_samples,))
samples = torch.stack([Normal(true_means[i], true_stddevs[i]).sample()for i in true_component_indices
])# 初始化参数
num_components = 2
estimated_means = torch.tensor([-0.5, 0.5], requires_grad=True)
estimated_stddevs = torch.tensor([1.0, 1.0], requires_grad=True)
estimated_weights = torch.tensor([0.5, 0.5], requires_grad=True)# 定义EM算法的迭代次数和收敛条件
num_iterations = 100
tolerance = 1e-6# EM算法
for iteration in range(num_iterations):# E步骤(Expectation)component_distributions = [Normal(estimated_means[i], estimated_stddevs[i])for i in range(num_components)]component_probs = torch.stack([component_distributions[i].log_prob(samples)for i in range(num_components)])log_likelihoods = torch.logsumexp(torch.log(estimated_weights.unsqueeze(1)) + component_probs, dim=0)log_component_probs = torch.log(estimated_weights.unsqueeze(1)) + component_probsresponsibilities = torch.exp(log_component_probs - log_likelihoods.unsqueeze(0))# M步骤(Maximization)estimated_weights = responsibilities.mean(dim=1)for i in range(num_components):estimated_means[i] = (responsibilities[i] * samples).sum() / responsibilities[i].sum()estimated_stddevs[i] = torch.sqrt((responsibilities[i] * (samples - estimated_means[i])**2).sum() / responsibilities[i].sum())# 计算对数似然函数值current_log_likelihood = log_likelihoods.mean()# 检查收敛条件if iteration > 0 and torch.abs(current_log_likelihood - previous_log_likelihood) < tolerance:breakprevious_log_likelihood = current_log_likelihood# 打印估计的参数值
print("Estimated means:", estimated_means)
print("Estimated stddevs:", estimated_stddevs)
print("Estimated weights:", estimated_weights)

这篇关于深度学习理论知识入门【EM算法、VAE算法、GAN算法】和【RBM算法、MCMC算法、HMC算法】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374265

相关文章

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加