机器学习 jupyter Python 监督学习 KNN算法 海伦约会实验

2023-11-08 23:10

本文主要是介绍机器学习 jupyter Python 监督学习 KNN算法 海伦约会实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.KNN算法介绍

(1)了判断未知实例的类别,以所有已知类别的实例作为参照。
(2)选择合适的K(参数)值。
(3)计算未知类别到已知类别点的距离,选择最近K个已知实例。
(4)根据少数服从多数的投票法则(majority-voting),让未知类别归类为K个最近邻样本中最多数的类别。

在这里插入图片描述

2.简单例子

使用KNN算法求G点的类型。
在这里插入图片描述

2.1 方法1:自己写的算法

2.1.1 做散点图

import matplotlib.pyplot as plt
import numpy as np
import operator
x1=[3,2,1]
y1=[104,100,81]
x2=[101,99,98]
y2=[10,5,2]
x_test=[18]
y_test=[90]
#画出散点图
plt.scatter(x1,y1,c='y',label='Romance')
plt.scatter(x2,y2,c='r',label='Action')
plt.scatter(x_test,y_test,label='Unknown')
plt.legend(loc='best')#图例最佳位置
plt.show()

运行结果:
在这里插入图片描述
2.1.2 使用KNN算法
2.1.2.1 收集数据

x_data=np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]
])
#print(x_data)
#x_data的行数代表样本点的个数,列数代表特征数
y_data=['Romance','Romance','Romance','Action','Action','Action','Action']
x_test=np.array([18,90])

2.1.2.2 计算未知点到所有已知类别点的距离

#2.KNN算法第二步:计算未知点到所有已知类别点的距离
#2.1复制未知点,复制之前需要知道样本点的个数,才能决定复制几次
#2.1.1求出样本点的长度,shape函数读取矩阵的长度,返回的是一个元组
print(x_data.shape)  #结果:(6, 2)dataSetSize=x_data.shape[0]
#np.tile(x_test,(dataSetSize,1)) 1表示在数组里面复制1次,
#tile函数实现数组的复制,tile(a,b) a行数上的复制次数,b列数上的复制次数
diffMat=np.tile(x_test,(dataSetSize,1))-x_data
diffMat
#2.2求平方
sqDiffMat=diffMat**2
print(sqDiffMat)
#2.3求和,sum函数,axis=0 列上求和(默认),axis=1行上求和
sqDistance=sqDiffMat.sum(axis=1)
print(sqDistance)
#2.4开方
distance=np.sqrt(sqDistance)
print(distance)sortedDistance=distance.argsort()
print(sortedDistance)

运行结果:
在这里插入图片描述
总结:相减,求平方,相加,开方。
涉及的知识点:
1.tile函数
2.sum函数求和
3.argsort函数

2.1.2.3 找到距离未知点最近的k个点,根据少数服从多数的原则(标签出现的次数),决定类别

#KNN算法第三步:找到距离未知点最近的k个点,根据少数服从多数的原则(标签出现的次数),决定类别
k=5
#不仅需要知道标签,而且需要知道标签出现的次数,key代表标签,value标签出现的次数
dict={}
for i in range(k):votelable=y_data[sortedDistance[i]]#字典里面添加元素dict[key]=value,key:value,get方法,setdefaultdict[votelable]=dict.get(votelable,0)+1#距离测试点最近的k个点的标签
print(dict)  
print(dict.items())#转化为列表
sortedDict=sorted(dict.items(),key=operator.itemgetter(1),reverse=True)
print(sortedDict)
sortedDict[0][0]

运行结果:
在这里插入图片描述
涉及的知识点:
1.字典添加元素
2.字典转化为列表

2.2.4 总结
优点:
提高自己编程能力。
缺点:
自己写的算法涉及知识点比较多;针对一个未知点进行分类,无法对多个点进行分类。

2.2 方法2:使用sklearn包的KNN算法

2.2.1 导入包

import numpy as np
from sklearn import neighbors#neighbors包含的KNN算法,可以直接调用

2.2.2 收集数据

x_train=np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])
print(x_train)
y_train=['Romance','Romance','Romance','Action','Action','Action']
x_test=np.array([[18,90]])#必须和训练集的维数一致,针对多个未知点

2.2.3 建模模型

#利用训练集训练样本点
#1.构建模型
model=neighbors.KNeighborsClassifier(n_neighbors=3)#n_neighors代表的是k
#2.训练模型
model.fit(x_train,y_train)
#3.模型训练完之后,做出预测(分类)
prediction=model.predict(x_test)
print(prediction)

运行结果:
[‘Romance’]

2.2.4 总结
注意测试集必须和训练集的维数一致,针对多个未知点。
优点:
算法简单,步骤清晰。
未知点可以为多个,灵活性强。

3.具体案列

3.1 题目 海伦约会实验

根据已经有的数据,推测海伦是否对下一位男生约会。
10%为测试集,90%为训练集。

3.2 部分数据

在这里插入图片描述
第一列是里程数,第二列是一周玩游戏的时间,第三列是吃的冰淇淋公斤数,第四列是喜爱程度。

3.3 求解过程

3.3.1 导入数据

import numpy as np
from sklearn import neighbors
from sklearn.model_selection import train_test_split#划分数据,评估模型
from sklearn.metrics import accuracy_score#精度
np.set_printoptions(suppress=True)#显示的数据不是科学计数法
dataSet=np.genfromtxt('datingTestSet.txt',dtype='str')
#x_data是字符串,无法进行计算,所以需要将x_data转化为数值,采用矩阵赋值的办法
x_data=dataSet[:,0:-1]
y_data=dataSet[:,-1]
dataSetnum=len(x_data)
#创建一个空矩阵
dataMat=np.zeros((dataSetnum,3))
#将x_data字符串添加到空矩阵
for i in range(dataSetnum):dataMat[i]=x_data[i]
print(dataMat)

运行结果:
在这里插入图片描述
由数据表可以看到,第一列到第三列是数值类型,第四列是字符串类型。在这里采用genfromtxt函数读取文件,输出类型全部为字符串。其次,使用矩阵赋值的办法使得第一列到第三列为数值类型。

从以上的运行结果,可以看到第一列的数值很大,但是在海伦的心目中,三个特征的地位是平等的,但是现在三个特征的权重是不平等的,所以需要进行归一化处理。

3.3.2 进行归一化处理

#归一化处理
# def autoNorm(dataSet):
#     minVals=dataSet.min(0)#axis=0,求每个矩阵列的最小值
#     maxVals=dataSet.max(0)
#     ranges=maxVals-minVals
#     m=dataSet.shape[0]#shape求矩阵长度,返回一个元组,原则里面第一个元素是矩阵的行数
#     normDataSet=dataSet-np.tile(minVals,(m,1))
#     normDataSet=normDataSet/np.tile(ranges,(m,1))
#     return normDataSet
# normMat=autoNorm(dataMat)
from sklearn import preprocessing
import numpy as np
np.set_printoptions(suppress=True)#显示的数据不是科学计数法
min_max_scaler=preprocessing.MinMaxScaler()
x_train_minmax=min_max_scaler.fit_transform(x_train)
print(x_train_minmax)

运行结果:
在这里插入图片描述
以上提供两种方法进行归一化处理。一是,自己写的算法。二是,sklearn包里面的算法。

3.3.3 划分数据集,建立模型,训练模型,求精度

#建立模型
model=neighbors.KNeighborsClassifier(n_neighbors=3)
#模型评估之前,先划分数据集,分为训练集以及测试集
#sklearn里面划分数据
x_train,x_test,y_train,y_test=train_test_split(normMat,y_data,test_size=0.1)
#10%作为测试集。90%作为训练集
#模型训练
model.fit(x_train,y_train)
#进行预测
predictions=model.predict(x_test)
#求精度,模型评估
s=accuracy_score(y_test,predictions)
print(s)
#模型评估完之后,发现精度(准确度,对/总=精度),模型比较好的
#解决的问题,改善约会网站的配对效果,下次约会,
#海伦只需要知道(里程数,玩游戏的时间,冰淇淋),就知道喜欢还是不喜欢

运行结果:
在这里插入图片描述
由于训练集合测试集是随机分配的,所以精度不是每次都一样,但是精度总是保持在90%,总的来说模型建立成功。

这篇关于机器学习 jupyter Python 监督学习 KNN算法 海伦约会实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373014

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.