机器学习 jupyter Python 监督学习 KNN算法 海伦约会实验

2023-11-08 23:10

本文主要是介绍机器学习 jupyter Python 监督学习 KNN算法 海伦约会实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.KNN算法介绍

(1)了判断未知实例的类别,以所有已知类别的实例作为参照。
(2)选择合适的K(参数)值。
(3)计算未知类别到已知类别点的距离,选择最近K个已知实例。
(4)根据少数服从多数的投票法则(majority-voting),让未知类别归类为K个最近邻样本中最多数的类别。

在这里插入图片描述

2.简单例子

使用KNN算法求G点的类型。
在这里插入图片描述

2.1 方法1:自己写的算法

2.1.1 做散点图

import matplotlib.pyplot as plt
import numpy as np
import operator
x1=[3,2,1]
y1=[104,100,81]
x2=[101,99,98]
y2=[10,5,2]
x_test=[18]
y_test=[90]
#画出散点图
plt.scatter(x1,y1,c='y',label='Romance')
plt.scatter(x2,y2,c='r',label='Action')
plt.scatter(x_test,y_test,label='Unknown')
plt.legend(loc='best')#图例最佳位置
plt.show()

运行结果:
在这里插入图片描述
2.1.2 使用KNN算法
2.1.2.1 收集数据

x_data=np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]
])
#print(x_data)
#x_data的行数代表样本点的个数,列数代表特征数
y_data=['Romance','Romance','Romance','Action','Action','Action','Action']
x_test=np.array([18,90])

2.1.2.2 计算未知点到所有已知类别点的距离

#2.KNN算法第二步:计算未知点到所有已知类别点的距离
#2.1复制未知点,复制之前需要知道样本点的个数,才能决定复制几次
#2.1.1求出样本点的长度,shape函数读取矩阵的长度,返回的是一个元组
print(x_data.shape)  #结果:(6, 2)dataSetSize=x_data.shape[0]
#np.tile(x_test,(dataSetSize,1)) 1表示在数组里面复制1次,
#tile函数实现数组的复制,tile(a,b) a行数上的复制次数,b列数上的复制次数
diffMat=np.tile(x_test,(dataSetSize,1))-x_data
diffMat
#2.2求平方
sqDiffMat=diffMat**2
print(sqDiffMat)
#2.3求和,sum函数,axis=0 列上求和(默认),axis=1行上求和
sqDistance=sqDiffMat.sum(axis=1)
print(sqDistance)
#2.4开方
distance=np.sqrt(sqDistance)
print(distance)sortedDistance=distance.argsort()
print(sortedDistance)

运行结果:
在这里插入图片描述
总结:相减,求平方,相加,开方。
涉及的知识点:
1.tile函数
2.sum函数求和
3.argsort函数

2.1.2.3 找到距离未知点最近的k个点,根据少数服从多数的原则(标签出现的次数),决定类别

#KNN算法第三步:找到距离未知点最近的k个点,根据少数服从多数的原则(标签出现的次数),决定类别
k=5
#不仅需要知道标签,而且需要知道标签出现的次数,key代表标签,value标签出现的次数
dict={}
for i in range(k):votelable=y_data[sortedDistance[i]]#字典里面添加元素dict[key]=value,key:value,get方法,setdefaultdict[votelable]=dict.get(votelable,0)+1#距离测试点最近的k个点的标签
print(dict)  
print(dict.items())#转化为列表
sortedDict=sorted(dict.items(),key=operator.itemgetter(1),reverse=True)
print(sortedDict)
sortedDict[0][0]

运行结果:
在这里插入图片描述
涉及的知识点:
1.字典添加元素
2.字典转化为列表

2.2.4 总结
优点:
提高自己编程能力。
缺点:
自己写的算法涉及知识点比较多;针对一个未知点进行分类,无法对多个点进行分类。

2.2 方法2:使用sklearn包的KNN算法

2.2.1 导入包

import numpy as np
from sklearn import neighbors#neighbors包含的KNN算法,可以直接调用

2.2.2 收集数据

x_train=np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])
print(x_train)
y_train=['Romance','Romance','Romance','Action','Action','Action']
x_test=np.array([[18,90]])#必须和训练集的维数一致,针对多个未知点

2.2.3 建模模型

#利用训练集训练样本点
#1.构建模型
model=neighbors.KNeighborsClassifier(n_neighbors=3)#n_neighors代表的是k
#2.训练模型
model.fit(x_train,y_train)
#3.模型训练完之后,做出预测(分类)
prediction=model.predict(x_test)
print(prediction)

运行结果:
[‘Romance’]

2.2.4 总结
注意测试集必须和训练集的维数一致,针对多个未知点。
优点:
算法简单,步骤清晰。
未知点可以为多个,灵活性强。

3.具体案列

3.1 题目 海伦约会实验

根据已经有的数据,推测海伦是否对下一位男生约会。
10%为测试集,90%为训练集。

3.2 部分数据

在这里插入图片描述
第一列是里程数,第二列是一周玩游戏的时间,第三列是吃的冰淇淋公斤数,第四列是喜爱程度。

3.3 求解过程

3.3.1 导入数据

import numpy as np
from sklearn import neighbors
from sklearn.model_selection import train_test_split#划分数据,评估模型
from sklearn.metrics import accuracy_score#精度
np.set_printoptions(suppress=True)#显示的数据不是科学计数法
dataSet=np.genfromtxt('datingTestSet.txt',dtype='str')
#x_data是字符串,无法进行计算,所以需要将x_data转化为数值,采用矩阵赋值的办法
x_data=dataSet[:,0:-1]
y_data=dataSet[:,-1]
dataSetnum=len(x_data)
#创建一个空矩阵
dataMat=np.zeros((dataSetnum,3))
#将x_data字符串添加到空矩阵
for i in range(dataSetnum):dataMat[i]=x_data[i]
print(dataMat)

运行结果:
在这里插入图片描述
由数据表可以看到,第一列到第三列是数值类型,第四列是字符串类型。在这里采用genfromtxt函数读取文件,输出类型全部为字符串。其次,使用矩阵赋值的办法使得第一列到第三列为数值类型。

从以上的运行结果,可以看到第一列的数值很大,但是在海伦的心目中,三个特征的地位是平等的,但是现在三个特征的权重是不平等的,所以需要进行归一化处理。

3.3.2 进行归一化处理

#归一化处理
# def autoNorm(dataSet):
#     minVals=dataSet.min(0)#axis=0,求每个矩阵列的最小值
#     maxVals=dataSet.max(0)
#     ranges=maxVals-minVals
#     m=dataSet.shape[0]#shape求矩阵长度,返回一个元组,原则里面第一个元素是矩阵的行数
#     normDataSet=dataSet-np.tile(minVals,(m,1))
#     normDataSet=normDataSet/np.tile(ranges,(m,1))
#     return normDataSet
# normMat=autoNorm(dataMat)
from sklearn import preprocessing
import numpy as np
np.set_printoptions(suppress=True)#显示的数据不是科学计数法
min_max_scaler=preprocessing.MinMaxScaler()
x_train_minmax=min_max_scaler.fit_transform(x_train)
print(x_train_minmax)

运行结果:
在这里插入图片描述
以上提供两种方法进行归一化处理。一是,自己写的算法。二是,sklearn包里面的算法。

3.3.3 划分数据集,建立模型,训练模型,求精度

#建立模型
model=neighbors.KNeighborsClassifier(n_neighbors=3)
#模型评估之前,先划分数据集,分为训练集以及测试集
#sklearn里面划分数据
x_train,x_test,y_train,y_test=train_test_split(normMat,y_data,test_size=0.1)
#10%作为测试集。90%作为训练集
#模型训练
model.fit(x_train,y_train)
#进行预测
predictions=model.predict(x_test)
#求精度,模型评估
s=accuracy_score(y_test,predictions)
print(s)
#模型评估完之后,发现精度(准确度,对/总=精度),模型比较好的
#解决的问题,改善约会网站的配对效果,下次约会,
#海伦只需要知道(里程数,玩游戏的时间,冰淇淋),就知道喜欢还是不喜欢

运行结果:
在这里插入图片描述
由于训练集合测试集是随机分配的,所以精度不是每次都一样,但是精度总是保持在90%,总的来说模型建立成功。

这篇关于机器学习 jupyter Python 监督学习 KNN算法 海伦约会实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373014

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: