python resample转换日K数据 (二)

2023-11-08 04:40
文章标签 python 数据 转换 resample

本文主要是介绍python resample转换日K数据 (二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过PythonAPI获取股票数据

聚宽

在这里插入图片描述

在这里插入图片描述

代码示例
获取平安银行的股票信息


from jqdatasdk import *
auth('','')#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=4, frequency='minute', fields=['open','close','high','low','volume','money'])
print(df)

在这里插入图片描述

可以看到官网有对每个API的介绍:
XSHG-上海证券交易所;XSHE-深圳证券交易所。

如何获取所有A股的行情数据


from jqdatasdk import *
import time#将所有股票列表转换成数组
stocks = list(get_all_securities(['stock']).index)for stock_code in stocks:print("正在获取股票行情数据,股票代码为:", stock_code)df = get_price(stock_code, end_date='2021-05-30 14:00:00',count=5, frequency='1d', fields=['open','close','high','low','volume','money'])print(df)time.sleep(3)

使用Resample函数转换 “”“日K”数据

一、什么是resample函数?
它是Python数据分析库Pandas的方法函数。

它主要用于转换时间序列的频次。可以做一些统计汇总的工作。

什么叫转换时间序列的频次呢?

比如说股票的日k和周k,

假设我只能获取到股票日K的数据,比如说11月1号到11月5号,那怎么样将它转换为以周为单位的K线呢?

在这里插入图片描述
首先我们要明确,周K的开盘、收盘、最高、最低是什么。每周的开盘价是当周第一天的开盘价,收盘价是当周最后一天的收盘价,它的最高价是这周最高的价格,最低价是本周所有最低价中最低的价格。所以你去看炒股平台,它的周k都是以周五的交易日为记录的时间点位置。开盘、收盘、最高、最低是按照我刚刚讲解的这个规则来计算的。至于月K、年K的选取规则也是一样的。月K的周期是一个月,年K的周期是一年。

这个计算准确性你也可以通过网上的数据进行验证。这个计算规则,包括开盘、收盘、最高、最低的计算,收拾resample函数可以做到的事情。此外Resample还有个功能,就是做统计汇总,比如说我想计算一支股票总的周成交量,就可以使用Resample.sum函数去把周一到周五的成交量加起来。

为了方便大家记忆 ,你也可以把resample理解为Excel表格中的透视表功能。你可以按照日期做各种筛选和汇总统计的。最重要的是他可以按照日期。

二、实战Resample函数
1.日K 转换为 周K
Resample是属于Pandas DataFrame下面的方法。
这里我们只对2个常用参数讲解,一个是rule,另一个是closed。

  • rule表示的是你放一个什么样的周期性指标在里面,用m代表Month,Y代表Year,w代表Week,
  • closed代表你取哪一个分界线,举例来说,比如说我把日k转换为周k,到底我是取周一为分界线还是周五为分界线呢?这就是通过closed来确定的。
from jqdatasdk import *
import pandas as pd#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])
print(df)

在这里插入图片描述

可以看到获取到了4月28号到5月28号的所有数据。为了更方便理解 我们再添加一列数据,就是当前日期是星期几的列

from jqdatasdk import *
import pandas as pd#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])
df["weekday"]=df.index.weekday
print(df)

在这里插入图片描述

这里0代表周一,这里如何转换为按“周”统计呢
.volume(成交量)和money(成交额)转换为总成交量和总成交额

from jqdatasdk import *
import pandas as pd#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])
df["weekday"]=df.index.weekday
print(df)df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('W').first()
df_week['close'] = df['close'].resample('W').last()
df_week['high'] = df['high'].resample('W').max()
df_week['low'] = df['low'].resample('W').min()
df_week['volume(sum)'] = df['volume'].resample('W').sum()
df_week['money(sum)'] = df['money'].resample('W').sum()print(df_week)

在这里插入图片描述

可以看到这里的2021-05-30是一个礼拜的最后一天。它对应的开盘价确实是这个数字。说明我们计算的周K数据是正确的。

收盘价就是每周收盘价最后一天的数据。

最高价就是每周收盘价的最大值。

最低价就是每周收盘价的最小值。

日K 转换为 月K

假设我有一年的数据,如果想转换为月K应该怎么转?
只需要改2个地方:

  • 添加start_date获取到一整年的数据
  • 将resample的参数改为M即可,M代表Month
#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2021-05-30 14:00:00', start_date='2020-05-30',frequency='1d', fields=['open','close','high','low','volume','money'])
df["weekday"]=df.index.weekday
print(df)df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('M').first()
df_week['close'] = df['close'].resample('M').last()
df_week['high'] = df['high'].resample('M').max()
df_week['low'] = df['low'].resample('M').min()
df_week['volume(sum)'] = df['volume'].resample('M').sum()
df_week['money(sum)'] = df['money'].resample('M').sum()print(df_week)

在这里插入图片描述

这篇关于python resample转换日K数据 (二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/367934

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.