PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置

本文主要是介绍PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132357976

EigenFold

Paper: EigenFold: Generative Protein Structure Prediction with Diffusion Models

EigenFold 是用于蛋白质结构预测的扩散生成模型(即,已知序列 至 结构分布)。基于谐波扩散,将键约束纳入扩散建模框架,并且产生一个级联分辨率的生成过程。

  • 扩散生成模型 (Diffusion Generative Model):利用随机扩散过程,生成数据样本的机器学习模型。
  • 谐波扩散 (Harmonic Diffusion):考虑谐波势能对于扩散过程的影响的数学模型。
  • 键约束 (Bond Constraints):限制蛋白质中原子间距离和角度变化范围的物理条件。
  • 级联分辨率 (Cascading-Resolution) :从粗糙到精细,逐步提高生成结果质量的方法。
  • OmegaFold 嵌入向量(OmegaFold Embeddings):由 OmegaFold 模型产生的,表示蛋白质序列特征的向量。

关于 EigenFold,即:

We define a diffusion process that models the structure as a system of harmonic oscillators and which naturally induces a cascading-resolution generative process along the eigenmodes of the system.
扩散过程,即将结构模型化为谐振子 (Harmonic Oscillators) 系统,该过程自然地沿着系统的本征模式 (Eigenmodes),产生级联分辨率的生成过程。

EigenFold 算法重点:

  • 蛋白质结构生成的新方法: 基于扩散模型的生成式模型,可以从给定的蛋白质序列生成一组可能的结构。该模型利用 OmegaFold 的预训练嵌入和得分网络来学习蛋白质结构的概率分布。
  • 谐波扩散过程:定义新的扩散过程,将蛋白质结构建模为一系列谐振子,其势能为相邻残基之间的距离的二次函数。该过程可以保证采样的结构满足化学约束,并且可以沿着系统的本征模式进行投影,实现逐步精细化的生成过程。
  • 得分网络架构:使用基于 E3NN 的图神经网络作为得分网络,输入为残基坐标和 OmegaFold 嵌入向量,输出为梯度向量。该网络具有 SE(3) 等变性,保证最终模型密度也具有 SE(3) 不变性。

EigenFold GitHub: https://github.com/bjing2016/EigenFold


1. 结构预测

准备 new.csv 文件,预测 7skh.B 的结构,即:

# with columns name, seqres (see provided splits for examples) and run
name,valid_alphas,seq,head,resolution,deposition_date,release_date,structure_method,seqres,seqlen
7skh.B.pdb,220,NAPVFQQPHYEVVLDEGPDTINTSLITVQALDGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,cell adhesion,2.27,2021-10-20,2022-10-26,x-ray diffraction,MNAPVFQQPHYEVVLDEGPDTINTSLITVQALDLDEGPNGTVTYAIVAGNIINTFRINKHTGVITAAKELDYEISHGRYTLIVTATDQCPILSHRLTSTTTVLVNVNDINDNVPTFPRDYEGPFDVTEGQPGPRVWTFLAHDRDSGPNGQVEYSVVDGDPLGEFVISPVEGVLRVRKDVELDRETIAFYNLTICARDRGVPPLSSTMLVGIRVLDINDNLEHHHHHH,227

运行命令:

python make_embeddings.py --out_dir ./embeddings --splits mydata/new.csv
python inference.py --model_dir ./pretrained_model --ckpt epoch_7.pt --pdb_dir ./structures --embeddings_dir ./embeddings --embeddings_key name --elbo --num_samples 5 --alpha 1 --beta 3 --elbo_step 0.2 --splits mydata/new.csv

预测的蛋白质结构,如下:

  • EigenFold 算法只能预测 CA 骨架,其余需要填充。
  • 黄色是 EigenFold 的预测结构,蓝色是真实的 PDB 结构 (7skh.B)。

即:

Img


2. 环境配置

下载 GitHub 工程:

git clone git@github.com:bjing2016/EigenFold.git

2.1 配置 Docker 环境

构建 Docker 环境:

nvidia-docker run -it --name eigenfold-[your name] -v [nfs path]:[nfs path] af2:v1.02

预先配置 Docker 环境中的 conda 源 与 pip 源,加速下载过程,参考 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

如果安装错误,清空 conda 环境,建议使用 rsync 快速删除,即:

mkdir tmp
# rsync -a --delete tmp/ /opt/conda/envs/eigenfold
rsync --delete-before -d tmp-new/ esm2_3B_feat/
rm -rf /opt/conda/envs/eigenfold

配置 conda 环境,即:

# 安装 conda 环境
conda create -n eigenfold python=3.8
conda activate eigenfold

2.2 配置 PyTorch 系列包

安装 PyTorch,建议使用 conda 安装,而不是 pip 安装,参考 Installing Previous Versions of PyTorch 即:

# pip 安装异常,建议使用 conda 安装。
# pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

预先测试 PyTorch 是否安装成功,即:

pythonimport torch
print(torch.__version__)  # 1.11.0
print(torch.cuda.is_available())  # True

再安装 PyTorch 相关包,一共 5 个包,即 torch-scattertorch-sparsetorch-clustertorch-spline-convtorch-geometric,建议逐个安装,排查问题,即:

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-spline-conv -f https://data.pyg.org/whl/torch-1.11.0+cu113.html
pip install torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

安装其他依赖包:

pip install e3nn pyyaml wandb biopython matplotlib pandas

2.3 配置 OmegaFold 依赖

安装 OmegaFold 依赖,即:

# 调用时,需要在 EigenFold 的根目录下。
wget https://helixon.s3.amazonaws.com/release1.pt
git clone https://github.com/bjing2016/OmegaFold
pip install --no-deps -e OmegaFold

注意需要预先下载 OmegaFold 的模型 release1.pt,大约 3 个 G左右。

OmegaFold GitHub: OmegaFold

This command will download the weight from https://helixon.s3.amazonaws.com/release1.pt to ~/.cache/omegafold_ckpt/model.pt and load the model

cd EigenFold
bypy info
bypy downfile /huggingface/eigenfold/omegafold-release1.pt model.pt

2.4 配置 TMScore 与 LDDT

安装 TMScore 与 LDDT,即:

mkdir /opt/bin
cd ~/binwget https://openstructure.org/static/lddt-linux.zip
unzip lddt-linux.zip
cp lddt-linux/lddt .
./lddt  # 测试wget https://zhanggroup.org/TM-score/TMscore.cpp
g++ -static -O3 -ffast-math -lm -o TMscore TMscore.cpp
./TMscore  # 测试export PATH="/opt/bin/:$PATH"

2.6 上传 Docker

提交 docker image,设置标签 (tag),以及上传 docker 至服务器,即:

# 提交 Tag
docker ps -l
docker commit [container id] eigenfold:v1.0# 准备远程 Tag
docker tag eigenfold:v1.0 harbor.[ip].com/[your name]/eigenfold:v1.0
docker images | grep "eigenfold"# 推送至远程
docker push harbor.[ip].com/[your name]/eigenfold:v1.0
# 从远程拉取
docker pull harbor.[ip].com/[your name]/eigenfold:v1.0# 或者保存至本地
docker save eigenfold:v1.0 | gzip > eigenfold_v1_0.tar.gz
# 加载已保存的 docker image
docker image load -i eigenfold_v1_0.tar.gz
docker images | grep "eigenfold"

BugFix

Bug1: torch_sparse 版本不兼容问题。

RuntimeError: 
object has no attribute sparse_csc_tensor:File "/opt/conda/envs/eigenfold/lib/python3.8/site-packages/torch_sparse/tensor.py", line 520value = torch.ones(self.nnz(), dtype=dtype, device=self.device())return torch.sparse_csc_tensor(colptr, row, value, self.sizes())~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

参考: torch has no attribute sparse_csr_tensor

torch-sparse 降级至 0.6.14 版本,即可:

conda list torch-sparse
# packages in environment at /opt/conda/envs/eigenfold:
#
# Name                    Version                   Build  Channel
torch-sparse              0.6.17                   pypi_0    pypipip install torch-sparse==0.6.14 -f https://data.pyg.org/whl/torch-1.11.0+cu113.html

Bug2: Python 3.9 新特性不兼容问题

TypeError: unsupported operand type(s) for |: 'dict' and 'dict'

原因:What’s New In Python 3.9

方案1是升级至 Python3.9 版本,方案2是修改源码,位于EigenFold/utils/pdb.py,即:

# d[key] = {'CA': 'C'} | {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
dict1 = {'CA': 'C'}
dict2 = {key: val['symbol'] for key, val in atoms.items() if val['symbol'] != 'H' and key != 'CA'}
d[key] = {**dict1, **dict2}

其余参考:

  • Linux 下删除大量文件效率对比,看谁删的快!

这篇关于PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363358

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤