【MogDB/openGauss如何实现自增主键】

2023-11-07 08:28

本文主要是介绍【MogDB/openGauss如何实现自增主键】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自增主键是我们在设计数据库表结构时经常使用的主键生成策略,主键的生成可以完全依赖数据库,无需人为干预,在新增数据的时候,我们只需要将主键的值设置为default,数据库就会为我们自动生成一个主键值。

MySQL主键自增使用AUTO_INCREMENT关键字,PostgreSQL自增使用SERIAL关键字或者序列。
而MogDB/openGauss里兼容两种语法。AUTO_INCREMENT在MogDB-3.1.0/openGauss-5.0.0以上适配。

下文会针对MogDB/openGauss里几种自增主键的实现进行一个简单的验证。

一、MySQL的方式(AUTO_INCREMENT)

注意,AUTO_INCREMENT功能,只有在MogDB/openGauss的B兼容模式下才可以使用,否则将会有如此下的提示。

MogDB=#  SELECT current_database(); current_database 
------------------postgres
(1 row)MogDB=# \l postgresList of databasesName   | Owner | Encoding | Collate | Ctype | Access privileges | Compatibility 
----------+-------+----------+---------+-------+-------------------+---------------postgres | om5   | UTF8     | C       | C     |                   | A
(1 row)MogDB=# CREATE TABLE test_create_autoinc(id bool auto_increment primary key, name varchar(200),a int) auto_increment=1;
ERROR:  auto_increment is supported only in B-format database
MogDB=# 

正确的使用方式如下:

MogDB=# create database db_mysql with dbcompatibility ='B';
CREATE DATABASE
MogDB=# \c db_mysql 
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db_mysql" as user "om5".
db_mysql=# CREATE TABLE test_create_autoinc_source(id int auto_increment primary key) AUTO_INCREMENT = 100;
NOTICE:  CREATE TABLE will create implicit sequence "test_create_autoinc_source_id_seq" for serial column "test_create_autoinc_source.id"
NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "test_create_autoinc_source_pkey" for table "test_create_autoinc_source"
CREATE TABLEdb_mysql=# \d test_create_autoinc_sourceTable "public.test_create_autoinc_source"Column |  Type   |        Modifiers        
--------+---------+-------------------------id     | integer | not null AUTO_INCREMENT
Indexes:"test_create_autoinc_source_pkey" PRIMARY KEY, btree (id) TABLESPACE pg_default--->插入值进行验证db_mysql=# INSERT INTO test_create_autoinc_source VALUES(DEFAULT);
INSERT 0 1
db_mysql=# INSERT INTO test_create_autoinc_source VALUES(DEFAULT);
INSERT 0 1
db_mysql=# SELECT id FROM test_create_autoinc_source ORDER BY 1;id  
-----100101
(2 rows)

二、PostgreSQL的方式(SERIAL)

postgresql(10+)提供了三种serial类型:smallserial,serial,bigserial,他不是真正的类型,而是在创建唯一标识符列的标志以方便使用。bigserial会创建一个bigint类型的自增,serial用以创建一个int类型的自增,smallserial用以创建一个smallint类型的自增,这几种类型在MogDB/openGauss里都是支持的。serial的MAXVALUE=9223372036854775807,起始值为1。
自增列的默认值是nextval(‘table_name_seq’::regclass)。

方式一

MogDB=# create table test_serial_a1(
id serial,
name character varying(256),
constraint pk_test_serial_id primary key( id)
);
NOTICE:  CREATE TABLE will create implicit sequence "test_serial_a1_id_seq" for serial column "test_serial_a1.id"
NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "pk_test_serial_id" for table "test_serial_a1"
CREATE TABLEMogDB=# \d test_serial_a1Table "public.test_serial_a1"Column |          Type          |                          Modifiers                          
--------+------------------------+-------------------------------------------------------------id     | integer                | not null default nextval('test_serial_a1_id_seq'::regclass)name   | character varying(256) | 
Indexes:"pk_test_serial_id" PRIMARY KEY, btree (id) TABLESPACE pg_defaultMogDB=# \d test_serial_a1_id_seqSequence "public.test_serial_a1_id_seq"Column     |  Type   |         Value         
---------------+---------+-----------------------sequence_name | name    | test_serial_a1_id_seqlast_value    | bigint  | 2start_value   | bigint  | 1increment_by  | bigint  | 1max_value     | bigint  | 9223372036854775807min_value     | bigint  | 1cache_value   | bigint  | 1log_cnt       | bigint  | 31is_cycled     | boolean | fis_called     | boolean | tuuid          | bigint  | 0
Owned by: public.test_serial_a1.id--->插入值进行验证MogDB=# insert into test_serial_a1 values(DEFAULT,'no1'); 
INSERT 0 1
MogDB=# insert into test_serial_a1 values(DEFAULT,'no1');
INSERT 0 1
MogDB=# SELECT * FROM test_serial_a1;id | name 
----+------1 | no12 | no1
(2 rows)

方式二

MogDB=# create table test_serial_a2(
id serial PRIMARY KEY,
name character varying(256)
);
NOTICE:  CREATE TABLE will create implicit sequence "test_serial_a2_id_seq" for serial column "test_serial_a2.id"
NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "test_serial_a2_pkey" for table "test_serial_a2"
CREATE TABLEMogDB=# \d test_serial_a2Table "public.test_serial_a2"Column |          Type          |                          Modifiers                          
--------+------------------------+-------------------------------------------------------------id     | integer                | not null default nextval('test_serial_a2_id_seq'::regclass)name   | character varying(256) | 
Indexes:"test_serial_a2_pkey" PRIMARY KEY, btree (id) TABLESPACE pg_default--->插入值进行验证MogDB=# insert into test_serial_a2 values(DEFAULT,'no1');
INSERT 0 1
MogDB=# insert into test_serial_a2 values(DEFAULT,'no1');
INSERT 0 1
MogDB=# SELECT * FROM test_serial_a2;id | name 
----+------1 | no12 | no1
(2 rows)

这两种方法用的是PostgreSQL的serial类型实现自增,drop表的时候指定的序列也会drop掉。

三、基于序列

基于序列的方式其实和第二种的基于serial的思路一样,一般的主键表,没有使用serial类型,那么我们可以通过创建序列,并在建表的时候指定默认值字段为序列的nextval来实现。

1.手动创建序列

MogDB=# CREATE SEQUENCE test_aaa_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
CREATE SEQUENCEMogDB=# \d test_aaa_id_seqSequence "public.test_aaa_id_seq"Column     |  Type   |        Value        
---------------+---------+---------------------sequence_name | name    | test_aaa_id_seqlast_value    | bigint  | 1start_value   | bigint  | 1increment_by  | bigint  | 1max_value     | bigint  | 9223372036854775807min_value     | bigint  | 1cache_value   | bigint  | 1log_cnt       | bigint  | 0is_cycled     | boolean | fis_called     | boolean | fuuid          | bigint  | 0

2.创建主键表

MogDB=#  create table test_bbb (
id integer PRIMARY KEY default nextval('test_aaa_id_seq'::regclass),
name character varying(128)
);
NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "test_bbb_pkey" for table "test_bbb"
CREATE TABLE
MogDB=# \d test_bbbTable "public.test_bbb"Column |          Type          |                       Modifiers                       
--------+------------------------+-------------------------------------------------------id     | integer                | not null default nextval('test_aaa_id_seq'::regclass)name   | character varying(128) | 
Indexes:"test_bbb_pkey" PRIMARY KEY, btree (id) TABLESPACE pg_default--->插入值进行验证
MogDB=# insert into test_bbb values(DEFAULT,'no1');
INSERT 0 1
MogDB=# insert into test_bbb values(DEFAULT,'no2');
INSERT 0 1
MogDB=# select * from test_bbb;id | name 
----+------1 | no12 | no2
(2 rows)

也可以创建完表、创建完序列后,使用alter语句,将序列赋值给主键,如下语句所示:

alter table test_aaa alter column id set default nextval('test_aaa_id_seq');

这种自行使用序列的方法在drop表的时候序列不会随着drop掉

这篇关于【MogDB/openGauss如何实现自增主键】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/362408

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S