熟悉mmdetection3d数据在模型中的处理流程

2023-11-07 04:59

本文主要是介绍熟悉mmdetection3d数据在模型中的处理流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1、搭建模型
    • 2、读取数据
    • 3、运行流程
      • 3.1 图像特征获取
      • 3.2 点云特征获取
      • 3.3 head
      • 3.4 编码bbox
    • 4、可视化
    • 5、总结

  • 本图文数据集采取KITTI数据集
  • 配置文件的介绍可以参考博主上一篇图文
  • 本图文旨在利用一条数据,走完整个多模态数据处理分支,获得bbox,并可视化在图像上

1、搭建模型

  • 本次教程选用的模型为MVXNet,是一个多模态融合的3D目标检测模型

  • 配置文件: mmdetection3d/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py

  • 本次使用预训练模型,可以在mmdetection3d的mozel zoo中下载 MVXNet模型

from mmdet3d.apis import init_model
config_file = '/home/wistful/work/mmdetection3d/configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py'
checkpoint_file = '/home/wistful/ResultDir/my_pth/mxvnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth'model = init_model(config_file, checkpoint_file, 'cuda:1')

在这里插入图片描述

2、读取数据

from mmdet3d.datasets import build_dataset
from mmcv import Configcfg = Config.fromfile(config_file)
# 读取数据集
datasets = [build_dataset(cfg.data.train)]
# 我们取其中的一条数据,作为演示用例
one_data = datasets[0][0]
  • 根据我们的配置文件,我们得到的datasets为一个长度为7424(KITTI训练集长度)的列表,每一项包括4个字段:[‘img_metas’, ‘points’, ‘img’, ‘gt_bboxes_3d’, ‘gt_labels_3d’]

  • 接下来所有数据均使用这一个one_data

3、运行流程

MVXNet结构图如下:

在这里插入图片描述

MVXNet简化版模型结构:

model = dict(type='DynamicMVXFasterRCNN',img_backbone=dict(), # 图像骨干img_neck=dict(), # 图像neckpts_voxel_layer=dict(), # 体素层pts_voxel_encoder=dict(), # 体素编码层pts_middle_encoder=dict(), # 中间编码层pts_backbone=dict(), # 点云骨干pts_neck=dict(), # 点云neckpts_bbox_head=dict() # bbox head)

结合结构图,以上配置文件的最简理解是,图像经过骨干、neck得到图像特征;点云经过体素、编码得到点云特征;查看原版配置文件就可以看到,会在一个层融合图像和点云特征;随后经过head,产出bbox。接下来,我们先来获取图像特征:

3.1 图像特征获取

extract_img_feat = model.extract_img_feat
# 获取图像特征,此处获取的是图像经过骨干和neck之后的数据,为5个通道数为256的特征
img_feats = extract_img_feat((one_data.get('img').data).unsqueeze(dim=0).cuda(), [one_data.get('img_metas').data])
for i in img_feats:print(i.shape)# extrac_img_feat代码:
def extract_img_feat(self, img, img_metas):"""Extract features of images."""if self.with_img_backbone and img is not None:input_shape = img.shape[-2:]  # 获取图片的尺寸# update real input shape of each single imgfor img_meta in img_metas:img_meta.update(input_shape=input_shape)  # 更新一下img_metasif img.dim() == 5 and img.size(0) == 1:  # 维度等于5的话去除一个维度(只取一个图片)img.squeeze_()elif img.dim() == 5 and img.size(0) > 1:  # 取出批量、图片个数、通道、高、宽B, N, C, H, W = img.size()img = img.view(B * N, C, H, W)  # 重构为 [批量*数量, 通道, 高, 宽]img_feats = self.img_backbone(img)  # 送入骨干else:return Noneif self.with_img_neck:img_feats = self.img_neck(img_feats)  # 将骨干再送入neckreturn img_feats

输出如下:

image-20230310194626048

3.2 点云特征获取

extract_pts_feat = model.extract_pts_feat
# 获取点云特征,此处同上面各个字段的类型需要去代码里看定义
img_feat_list = list(img_feats)
pts_feats = extract_pts_feat([one_data.get('points').data.cuda()], img_feat_list, [one_data.get('img_metas').data])# extract_pts_feat代码:
def extract_pts_feat(self, pts, img_feats, img_metas):"""Extract features of points."""if not self.with_pts_bbox:return Nonevoxels, num_points, coors = self.voxelize(pts)  # 体素化# 体素编码器voxel_features = self.pts_voxel_encoder(voxels, num_points, coors,img_feats, img_metas)batch_size = coors[-1, 0] + 1x = self.pts_middle_encoder(voxel_features, coors, batch_size)x = self.pts_backbone(x)if self.with_pts_neck:x = self.pts_neck(x)return x

此时,我们已经得到图像特征和点云特征了,下面将特征送入head

3.3 head

# 此处的head为Anchor3DHead,返回值有三个: cls_score, bbox_pred, dir_cls_preds
# 其中,clas_score 通道数为  num_classes * num_anchors, num_classes在配置文件中
# bbox_pred 通道数为 num_anchors * box_code_size
# dir_cls_preds 通道数为 num_anchors * 2
# 得到head的输出后,还需要运行一下解码模块,才能得到最终的bbox和分类情况
pts_bbox_head = model.pts_bbox_head
pts_out = pts_bbox_head(pts_feats)  # tuple[list[torch.Tensor]]
cls_score, bbox_pred, dir_cls_preds = pts_out
print("cls_score:", cls_score[0].shape)
print("bbox_pred:", bbox_pred[0].shape)
print("dir_cls_preds:", dir_cls_preds[0].shape)

在这里插入图片描述

3.4 编码bbox

# 将head得到的输出编码为bboxer
bboxes = model.pts_bbox_head.get_bboxes(cls_score, bbox_pred, dir_cls_preds, [one_data.get('img_metas').data])
print(type(bboxes[0][0]))  # 是在LiDAR坐标系下
bboxes_data = bboxes[0][0]  # 得到了n个预测框
bboxes_data

image-20230310195117153

以上是最简版的一条数据在模型里的流动过程,还有n多实现细节,需要去深扒代码

4、可视化

这一部分,我们可视化我们在3.4中得到的bbox,程序自己看吧

import cv2
from mmdet3d.core import show_multi_modality_resultimg_metas = one_data.get('img_metas').data
img_file_path = img_metas['filename'] # 获取one_data对应的图像文件名img = cv2.imread(img_file_path) # 读取图像
front_mat = one_data.get('img_metas').data.get('lidar2img') # 获取投影矩阵gt_boxes = one_data.get('gt_bboxes_3d').data # 从one_data中获取gt_bboxes
print(gt_boxes)
print(bboxes_data)
# gt_bboxes_cam
bboxes_data = bboxes_data.to('cpu')
# 保存可视化图像到out_dir
show_multi_modality_result(img=img,box_mode='lidar',gt_bboxes=gt_boxes,img_metas=img_metas,pred_bboxes=bboxes_data,proj_mat=front_mat,out_dir="/home/wistful/work/mmdetection3d/visual_img/",filename="test",show=False)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GcltvkGl-1678449986037)(null)]

这里我得到了四个输出,是因为我改动了一下show_multi_modality_result方法,加了一个将地面真相bbox和预测bbox绘制到一张图像上的方法。如下图所示,橙色为地面真相bbox,蓝色为预测框

在这里插入图片描述

5、总结

简单画了一个流程图,橙色代表我们获取的数据内容,蓝色代表网络,绿色代表我们得到的东西

在这里插入图片描述

这篇关于熟悉mmdetection3d数据在模型中的处理流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361413

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装