Python批量下载ERA5数据

2023-11-07 03:28
文章标签 python 数据 批量 下载 era5

本文主要是介绍Python批量下载ERA5数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. ERA5数据简介

ERA5是第五代ECMWF大气再分析全球气候数据(ECMWF),该数据集的第一部分现在可以公开使用(1979年到3个月内)。ERA5数据提供每小时的大气、陆地和海洋气候变量的估计值,地球数据精确到了30km网格,包括了137层的大气数据。
网址:ERA-5

2. 下载数据的准备工作

(1) 注册CDS账号

可使用邮箱直接注册,注册网址如下:https://cds.climate.copernicus.eu/user/register?destination=%2F%23!%2Fhome
注册完后查看自己的邮箱,会给个链接设置密码。

(2) 获取API key

  • 注册完成后,进行登录,点击右上角的用户,查看用户信息,找到下图框出的API key:
    在这里插入图片描述

(3) 创建".cdsapirc"文件

  • 在路径 “C:\Users\用户名” 底下创建 “.cdsapirc” 文件(打开文本文档,输入下面内容后,另存为,选择文件类型-”所有文件“,文件名: “.cdsapirc”),在 “.cdsapirc” 文件输入的内容如下:
url: https://cds.climate.copernicus.eu/api/v2
key: UID:API Key

其中UID替换为上图红框给出的UID的数字,API key也替换为红框框住部分的数字。

(4) 安装cdsapi第三方库

pip install cdsapi

在这里插入图片描述

3. 批量下载

以下载ERA5-Land hourly data from 1950 to present中的数据举例:

  • 选择自己需要的数据、年份、月份、天、时间、以及空间位置

在这里插入图片描述

  • 然后下滑到最后,点击“Show API request” 选项,得到下面所示的图,其中“Terms of use”是一些条例,得先点击同意,才能下载。
    在这里插入图片描述
  • 将上述代码复制到一个.py文件下,然后Python运行,即可下载再分析数据。

4. 批量下载数据

  • 例如,要下载 “ERA5 hourly data on single levels from 1979 to present” 数据集中1979年到2020年每个月的全球2 m温度再分析数据,并保存为nc文件。
import cdsapi
import calendarc = cdsapi.Client()  # 创建用户# 数据信息字典
dic = {'product_type': 'reanalysis',  # 产品类型'format': 'netcdf',  # 数据格式'variable': '2m_temperature',  # 变量名称'year': '',  # 年,设为空'month': '',  # 月,设为空'day': [],  # 日,设为空'time': [  # 小时'00:00', '01:00', '02:00', '03:00', '04:00', '05:00','06:00', '07:00', '08:00', '09:00', '10:00', '11:00','12:00', '13:00', '14:00', '15:00', '16:00', '17:00','18:00', '19:00', '20:00', '21:00', '22:00', '23:00']
}# 通过循环批量下载1979年到2020年所有月份数据
for y in range(1979, 2021):  # 遍历年for m in range(1, 13):  # 遍历月day_num = calendar.monthrange(y, m)[1]  # 根据年月,获取当月日数# 将年、月、日更新至字典中dic['year'] = str(y)dic['month'] = str(m).zfill(2)dic['day'] = [str(d).zfill(2) for d in range(1, day_num + 1)]filename = 'E:\\Data\\ERA5\\1979-2020\\2m_temperature\\' + str(y) + str(m).zfill(2) + '.nc'  # 文件存储路径c.retrieve('reanalysis-era5-single-levels', dic, filename)  # 下载数据

5. 可使用IDM加速下载

详情请参考:https://blog.csdn.net/qq_39373443/article/details/118086241

这篇关于Python批量下载ERA5数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/360932

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

SpringBoot返回文件让前端下载的几种方式

《SpringBoot返回文件让前端下载的几种方式》文章介绍了开发中文件下载的两种常见解决方案,并详细描述了通过后端进行下载的原理和步骤,包括一次性读取到内存和分块写入响应输出流两种方法,此外,还提供... 目录01 背景02 一次性读取到内存,通过响应输出流输出到前端02 将文件流通过循环写入到响应输出流

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符