PCL中Sample_consensus模块支持的几何模型

2023-11-06 22:58

本文主要是介绍PCL中Sample_consensus模块支持的几何模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

As of PCL 1.0, the following models are supported: 

(1)SACMODEL_PLANE(三维平面)

  • used to determine plane models. The four coefficients of the plane are itsHessian Normal form: [normal_x normal_y normal_z d
    • a : the X coordinate of the plane's normal (normalized)
    • b : the Y coordinate of the plane's normal (normalized)
    • c : the Z coordinate of the plane's normal (normalized)
    • d : the fourth Hessian component of the plane's equation
(2) SACMODEL_LINE(三维直线)
  • used to determine line models. The six coefficients of the line are given by a point on the line and the direction of the line as: [point_on_line.x point_on_line.y point_on_line.z line_direction.x line_direction.y line_direction.z
    • point_on_line.x : the X coordinate of a point on the line
    • point_on_line.y : the Y coordinate of a point on the line
    • point_on_line.z : the Z coordinate of a point on the line
    • line_direction.x : the X coordinate of a line's direction
    • line_direction.y : the Y coordinate of a line's direction
    • line_direction.z : the Z coordinate of a line's direction

(3) SACMODEL_CIRCLE2D(二维圆)
  • used to determine 2D circles in a plane. The circle's three coefficients are given by its center and radius as: [center.x center.y radius
    • center.x : the X coordinate of the circle's center
    • center.y : the Y coordinate of the circle's center
    • radius : the circle's radius
(4) SACMODEL_CIRCLE3D

  • not implemented yet 
(5) SACMODEL_SPHERE(球)
  • used to determine sphere models. The four coefficients of the sphere are given by its 3D center and radius as: [center.x center.y center.z radius]  
    • center.x : the X coordinate of the sphere's center
    • center.y : the Y coordinate of the sphere's center
    • center.z : the Z coordinate of the sphere's center
    • radius : the sphere's radius 
(6) SACMODEL_CYLINDER(柱)

  • used to determine cylinder models. The seven coefficients of the cylinder are given by a point on its axis, the axis direction, and a radius, as: [point_on_axis.x point_on_axis.y point_on_axis.z axis_direction.x axis_direction.y axis_direction.z radius
    • point_on_axis.x : the X coordinate of a point located on the cylinder axis
    • point_on_axis.y : the Y coordinate of a point located on the cylinder axis
    • point_on_axis.z : the Z coordinate of a point located on the cylinder axis
    • axis_direction.x : the X coordinate of the cylinder's axis direction
    • axis_direction.y : the Y coordinate of the cylinder's axis direction
    • axis_direction.z : the Z coordinate of the cylinder's axis direction
    • radius : the cylinder's radius 
(7) SACMODEL_CONE 
  • not implemented yet 
(8)SACMODEL_TORUS

  • not implemented yet 
(9) SACMODEL_PARALLEL_LINE(平行线)

  • a model for determining a line parallel with a given axis, within a maximum specified angular deviation. The line coefficients are similar toSACMODEL_LINE. 

SampleConsensusModelParallelLine defines a model for 3D line segmentation using additional angular constraints.  

The model coefficients are defined as:

  • point_on_line.x : the X coordinate of a point on the line
  • point_on_line.y : the Y coordinate of a point on the line
  • point_on_line.z : the Z coordinate of a point on the line
  • line_direction.x : the X coordinate of a line's direction
  • line_direction.y : the Y coordinate of a line's direction
  • line_direction.z : the Z coordinate of a line's direction 
(10) SACMODEL_PERPENDICULAR_PLANE
  • a model for determining a plane perpendicular to an user-specified axis, within a maximum specified angular deviation. The plane coefficients are similar to SACMODEL_PLANE. 
SampleConsensusModelPerpendicularPlane defines a model for 3D plane segmentation using additional angular constraints.

The plane must be perpendicular to an user-specified axis (setAxis), up to an user-specified angle threshold (setEpsAngle). The model coefficients are defined as:

  • a : the X coordinate of the plane's normal (normalized)
  • b : the Y coordinate of the plane's normal (normalized)
  • c : the Z coordinate of the plane's normal (normalized)
  • d : the fourth Hessian component of the plane's equation

Code example for a plane model, perpendicular (within a 15 degrees tolerance) with the Z axis:

 SampleConsensusModelPerpendicularPlane<pcl::PointXYZ> model (cloud);model.setAxis (Eigen::Vector3f (0.0, 0.0, 1.0));model.setEpsAngle (pcl::deg2rad (15));
Note:
Please remember that you need to specify an angle > 0 in order to activate the axis-angle constraint!


(11)SACMODEL_PARALLEL_LINES - not implemented yet 

(12) SACMODEL_NORMAL_PLANE
  • a model for determining plane models using an additional constraint: the surface normals at each inlier point has to be parallel to the surface normal of the output plane, within a maximum specified angular deviation. The plane coefficients are similar to SACMODEL_PLANE. 

    SampleConsensusModelNormalPlane defines a model for 3D plane segmentation using additional surface normal constraints. 、

    Basically this means that checking for inliers will not only involve a "distance to model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals.

    The model coefficients are defined as:

    • a : the X coordinate of the plane's normal (normalized)
    • b : the Y coordinate of the plane's normal (normalized)
    • c : the Z coordinate of the plane's normal (normalized)
    • d : the fourth Hessian component of the plane's equation 

    To set the influence of the surface normals in the inlier estimation process, set the normal weight (0.0-1.0), e.g.:

     SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;...sac_model.setNormalDistanceWeight (0.1);...


(13) SACMODEL_PARALLEL_PLANE
  • a model for determining a plane parallel to an user-specified axis, within a maximim specified angular deviation. SACMODEL_PLANE. 

SampleConsensusModelParallelPlane defines a model for 3D plane segmentation using additional angular constraints.

The plane must be parallel to a user-specified axis (setAxis) within an user-specified angle threshold (setEpsAngle).

Code example for a plane model, parallel (within a 15 degrees tolerance) with the Z axis:

 SampleConsensusModelParallelPlane<pcl::PointXYZ> model (cloud);model.setAxis (Eigen::Vector3f (0.0, 0.0, 1.0));model.setEpsAngle (pcl::deg2rad (15));

(14) SACMODEL_NORMAL_PARALLEL_PLANE
  • defines a model for 3D plane segmentation using additional surface normal constraints. The plane must lieparallel to a user-specified axis. SACMODEL_NORMAL_PARALLEL_PLANE therefore is equivallent to SACMODEL_NORMAL_PLANE + SACMODEL_PARALLEL_PLANE. The plane coefficients are similar toSACMODEL_PLANE. 

SampleConsensusModelNormalParallelPlane defines a model for 3D plane segmentation using additional surface normal constraints. 


Basically this means that checking for inliers will not only involve a "distance to model" criterion, but also an additional "maximum angular deviation" between the plane's normal and the inlier points normals. In addition, the plane normal must lie parallel to an user-specified axis.

The model coefficients are defined as:

  • a : the X coordinate of the plane's normal (normalized)
  • b : the Y coordinate of the plane's normal (normalized)
  • c : the Z coordinate of the plane's normal (normalized)
  • d : the fourth Hessian component of the plane's equation

To set the influence of the surface normals in the inlier estimation process, set the normal weight (0.0-1.0), e.g.:

 SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model;...sac_model.setNormalDistanceWeight (0.1);...
举例:(使用参数化模型投影点云到三维平面)

用到ModelCoefficients结构和ProjectInliers滤波器

说明:填充ModelCoefficients的值,例子中使用了一个ax+by+cz+d=0的平面模型,其中a=b=d=0,c=1;

创建了ProjectInliers对象,并使用刚定义好的 ModelCoefficients作为投影对象的模型参数。


#include<iostream>
#include<pcl\point_cloud.h>
#include<pcl\point_types.h>
#include<pcl\ModelCoefficients.h>
#include<pcl\filters\project_inliers.h>
using namespace std;
int main()
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected(new pcl::PointCloud<pcl::PointXYZ>);cloud->width=5;cloud->height=1;cloud->points.resize(cloud->width*cloud->height);for(size_t i=0;i<cloud->points.size();i++){cloud->points[i].x=1024*rand()/(RAND_MAX+1.0f);cloud->points[i].y=1024*rand()/(RAND_MAX+1.0f);cloud->points[i].z=1024*rand()/(RAND_MAX+1.0f);}std::cerr<<"Cloud before projection:"<<std::endl;for(size_t i=0;i<cloud->points.size();i++)std::cerr<<' '<<cloud->points[i].x<<' '<<cloud->points[i].y<<' '<<cloud->points[i].z<<std::endl;//定义模型系数对象,并填充对应的数据pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients());coefficients->values.resize(4);coefficients->values[0]=coefficients->values[1]=coefficients->values[3]=0;coefficients->values[2]=1.0;pcl::ProjectInliers<pcl::PointXYZ> proj;//创建投影滤波对象proj.setModelType(pcl::SACMODEL_PLANE);//设置对象对应的投影模型proj.setInputCloud(cloud);      //设置输入点云proj.setModelCoefficients(coefficients);//设置模型对应的系数proj.filter(*cloud_projected);std::cerr<<"Cloud after projection:"<<std::endl;for(size_t i=0;i<cloud->points.size();i++)std::cerr<<' '<<cloud_projected->points[i].x<<' '<<cloud_projected->points[i].y<<' '<<cloud_projected->points[i].z<<std::endl;system("pause");return 0;
}

总结:投影钱的z轴都不为0,是随机产生的值,投影之后,打印结果表明,x,y没有改变,z都变成0。

该投影滤波类输入为点云和投影模型,输出为投影到模型上之后的点云。

这篇关于PCL中Sample_consensus模块支持的几何模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359554

相关文章

Python AST 模块实战演示

《PythonAST模块实战演示》Python的ast模块提供了一种处理Python代码的强大工具,通过解析代码生成抽象语法树(AST),可以进行代码分析、修改和生成,接下来通过本文给大家介绍Py... 目录 什么是抽象语法树(AST)️ ast 模块的核心用法1. 解析代码生成 AST2. 查看 AST

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

golang实现nacos获取配置和服务注册-支持集群详解

《golang实现nacos获取配置和服务注册-支持集群详解》文章介绍了如何在Go语言中使用Nacos获取配置和服务注册,支持集群初始化,客户端结构体中的IpAddresses可以配置多个地址,新客户... 目录golang nacos获取配置和服务注册-支持集群初始化客户端可选参数配置new一个客户端 支

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Python sys模块的使用及说明

《Pythonsys模块的使用及说明》Pythonsys模块是核心工具,用于解释器交互与运行时控制,涵盖命令行参数处理、路径修改、强制退出、I/O重定向、系统信息获取等功能,适用于脚本开发与调试,需... 目录python sys 模块详解常用功能与代码示例获取命令行参数修改模块搜索路径强制退出程序标准输入

Python pickle模块的使用指南

《Pythonpickle模块的使用指南》Pythonpickle模块用于对象序列化与反序列化,支持dump/load方法及自定义类,需注意安全风险,建议在受控环境中使用,适用于模型持久化、缓存及跨... 目录python pickle 模块详解基本序列化与反序列化直接序列化为字节流自定义对象的序列化安全注

python pymodbus模块的具体使用

《pythonpymodbus模块的具体使用》pymodbus是一个Python实现的Modbus协议库,支持TCP和RTU通信模式,支持读写线圈、离散输入、保持寄存器等数据类型,具有一定的参考价值... 目录一、详解1、 基础概念2、核心功能3、安装与设置4、使用示例5、 高级特性6、注意事项二、代码示例

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python