GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集

本文主要是介绍GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球固定宽带和移动(蜂窝)网络性能¶

全球固定宽带和移动(蜂窝)网络性能,分配给缩放级别 16 网络墨卡托图块(赤道处约 610.8 米 x 610.8 米)。数据以 Shapefile 格式和 Apache Parquet 格式提供,其几何形状以众所周知的文本 (WKT) 表示,投影在 EPSG:4326 中。下载速度、上传速度和延迟是通过适用于 Android 和 iOS 的 Ookla 应用程序的 Speedtest 收集的,并对每个图块进行平均。测量结果将被过滤为包含 GPS 质量定位精度的结果。前言 – 人工智能教程

数据集的可用年份:2019、2020、2021、2022和2023

引文¶
Speedtest® by Ookla® Global Fixed and Mobile Network Performance Maps.
Based on analysis by Ookla of Speedtest Intelligence® data for [DATA TIME PERIOD].
Provided by Ookla and accessed [DAY MONTH YEAR]. Ookla trademarks used under license
and reprinted with permission.

在此处查找 GitHub 项目和数据集: https: //github.com/teamookla/ookla-open-data您还可以从 AWS 开放数据注册表下载数据集: https: //registry.opendata.aws/speedtest-global-performance /

瓦片¶

Ookla平台每月进行数亿次速度测试。为了创建可管理的数据集,我们将原始数据聚合到图块中。数据图块的大小被定义为“缩放级别”(或“z”)的函数。当 z=0 时,一块图块的大小就是整个世界的大小。在 z=1 时,图块在垂直和水平方向上分成两半,形成覆盖地球的 4 个图块。随着缩放级别的增加,这种图块分割会持续下去,导致当我们放大给定区域时图块会呈指数级减小。根据这个定义,图块大小实际上是根据Web 墨卡托投影(EPSG:3857) 的地球宽度/高度的一部分。因此,图块大小根据纬度略有不同,但图块大小可以以米为单位进行估计。

出于这些图层的目的,使用缩放级别 16 (z=16) 进行平铺。这相当于赤道处大约 610.8 米 x 610.8 米的图块(18 角秒块)。每个瓷砖的几何形状在现场以WGS 84 (EPSG:4326)表示tile

平铺属性¶

每个图块包含以下相邻属性:

字段名称类型描述
平均d_kbps整数在磁贴中执行的所有测试的平均下载速度,以每秒千位表示。
平均ukbps整数在图块中执行的所有测试的平均上传速度,以每秒千位表示。
平均纬度毫秒数整数在图块中执行的所有测试的平均延迟(以毫秒为单位)
测试整数在图块中进行的测试数量。
设备整数在磁贴中贡献测试的唯一设备的数量。
四键文本代表图块的四键。
四键¶

四键可以充当图块的唯一标识符。这对于在空间上连接多个时期(季度)的数据、创建更粗略的空间聚合而不使用地理空间函数、空间索引、分区以及存储和导出切片几何形状的替代方案非常有用。

层数¶

两层作为单独的文件集分布:

  • performance_mobile_tiles- 包含从具有 GPS 质量位置和蜂窝连接类型(例如 4G LTE、5G NR)的移动设备进行的测试的图块。
  • performance_fixed_tiles- 包含从具有 GPS 质量位置和非蜂窝连接类型(例如 WiFi、以太网)的移动设备进行的测试的图块。
时间段和更新频率¶

图层是根据一个季度(三个月)的数据生成的,文件将每季度更新和添加一次。一个/year=2020/quarter=1/时期(即 2020 年第一季度)将包括 之前或之后生成的所有2020-01-01数据2020-04-01

数据会定期重新汇总,以遵守适用于某些司法管辖区的法律规定的数据主体访问请求 (DSAR),包括但不限于《通用数据保护条例》(GDPR)、《加州消费者隐私法》(CCPA) 和《Lei Geral》 de Proteção de Dados (LGPD)。因此,在不同时间访问的数据可能会导致测试总数、图块和生成的性能指标发生变化。

网络图块

地球引擎片段¶
var mobile_20210101 = ee.FeatureCollection("projects/sat-io/open-datasets/network/mobile_tiles/2022-01-01_performance_mobile_tiles");
var fixed_20210101 = ee.FeatureCollection("projects/sat-io/open-datasets/network/fixed_tiles/2022-01-01_performance_fixed_tiles");

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-FIXED-MOBILE-NETWORK-PERFORMANCE

不同季度的移动和固定图块的地球引擎文件按以下格式排列,因为季度是 3 个月间隔,将月份变量替换为 01,04,07,10(代表 3 个月间隔)

* ee.FeatureCollection("projects/sat-io/open-datasets/network/mobile_tiles/Year-month-01_performance_mobile_tiles")
* ee.FeatureCollection("projects/sat-io/open-datasets/network/fixed_tiles/Year-month-01_performance_mobile_tiles")
栅格数据集¶

作为处理该数据集的一部分,我进一步将这些数据集转换为 32 位浮点栅格,这些栅格以 610m 分辨率生成,并且 avg_d_kbps、avg_u_kbps、avg_lat_ms、devices、tests 等要素属性在这些图像的波段中转换。每个季度的开始和结束日期都会进一步添加到图像中,但矢量到光栅转换过程中不会保留四边形信息。结果是固定和移动数据集的两个图像集合。

网络栅格

地球引擎片段¶
var fixed = ee.ImageCollection("projects/sat-io/open-datasets/network/raster_tiles/performance_fixed_tiles"),vis_fixed = {"opacity":1,"bands":["avg_d_kbps"],"min":1007.8523559570312,"max":125438.453125,"palette":["b40a01","ff3608","ffc46c","fff8a7","cbff87","52ff58","3bff89","35ffda","1f4fff"]},mobile = ee.ImageCollection("projects/sat-io/open-datasets/network/raster_tiles/performance_mobile_tiles"),vis_mobile = {"opacity":1,"bands":["avg_d_kbps"],"min":829.6676025390625,"max":102469.4453125,"palette":["b40a01","ff3608","ffc46c","fff8a7","cbff87","52ff58","3bff89","35ffda","1f4fff"]};
var fixed_image = fixed.first()
var mobile_image = mobile.first()Map.centerObject(fixed_image,2)Map.addLayer(fixed_image,vis_fixed,'Average Fixed Download Speed in kbps');Map.addLayer(mobile_image,vis_mobile,'Average Mobile Download Speed in kbps')var Stranger_Things= 
[{"featureType": "all","elementType": "all","stylers": [{"invert_lightness": true},{"saturation": "-9"},{"lightness": "0"},{"visibility": "simplified"}]},{"featureType": "landscape.man_made","elementType": "all","stylers": [{"weight": "1.00"}]},{"featureType": "road.highway","elementType": "all","stylers": [{"weight": "0.49"}]},{"featureType": "road.highway","elementType": "labels","stylers": [{"visibility": "on"},{"weight": "0.01"},{"lightness": "-7"},{"saturation": "-35"}]},{"featureType": "road.highway","elementType": "labels.text","stylers": [{"visibility": "on"}]},{"featureType": "road.highway","elementType": "labels.text.stroke","stylers": [{"visibility": "off"}]},{"featureType": "road.highway","elementType": "labels.icon","stylers": [{"visibility": "on"}]}
]
Map.setOptions('Stranger_Things', {Stranger_Things: Stranger_Things})

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-FIXED-MOBILE-NETWORK-PERF-光栅

执照¶

这些数据集根据 Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 提供

提供者:奥克拉

GEE 策展人:Samapriya Roy

关键词::分析、宽带、城市、市政、基础设施、互联网、网络流量、电信、瓦片

最后更新:2023-09-18

这篇关于GEE数据集——2019、2020、2021、2022和2023年全球固定宽带和移动(蜂窝)网络性能Shapefile 格式数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/354658

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口