集成聚类之EAC算法(证据积累数据聚类)附:单连接(SL)易理解详谈

2023-11-05 20:41

本文主要是介绍集成聚类之EAC算法(证据积累数据聚类)附:单连接(SL)易理解详谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       最近要写论文涉及到聚类集成,想先从EAC做起,集成方面做得还不是很好。如果有机会的话,希望也在研究集成聚类的大佬们和我联系,一起研究探讨集成聚类这方面的知识。感谢各位!

   

       证据积累的想法是这样的:将每个聚类结果作为数据组织独立的证据,把多个聚类的结果合并到一个分区中。

 

方法为拆分合并:

(1)拆分:把大型的多维数据分成小型的球型簇。

                    使用K-Means算法执行此步骤,因为通过K的随机初始化,可以获得各种聚类结果。

(2)结合:为将不同数目的聚类分区并到一块,使用“投票法”合并聚类的结果。

         那么肯定会有这么一种可能,“自然”产生的集群可能在不同集群下的统一集群(不同的划分,做出一个邻近度矩阵)          

         在同一个集群下模式对的同时出现做一个投票标记给关联上。做一个矩阵co-assocation(i,j)=\frac{votes_{ij}}{N}

         N是聚类的数目,votes_{ij}是ij对,被分配给N个聚类数中相同聚类的次数。

(3)合并:恢复自然簇,根据邻域关系,用MST算法(最小生成树),用t的阙值切断弱连接,这句话说的专业一点就是用阙值t在相似性矩阵上切割单连接(SL)生成的树状图,来合并拆分阶段生成的簇。

补充

          1.MST(最小生成树):学过数据结构的一定都会,包括解决方法两种,克鲁斯卡尔和普利姆算法,很简单,如果有忘记的朋友们可以自行复习一下。

          2.那么什么是单连接(SL)呢?:单连接和全连接都是由(2)的邻近度矩阵所出现的。

                                                                 单连接是作用于阙值图的

(阙值图是N个节点的无向图,每个节点都是一个对象,图中不存在环和多重边。用G(v)表示,v表示不相似的程度。给一个v,如果节点i和j之间的不相似度小于v,就在i和j之间插入一条边edge(i,j)。)

例:邻近度矩阵:D=\begin{Bmatrix} 0\, \, 0\, \, 0\, \, 2\, \,0\\ 0\, \, 0\, \, 1\, \, 5\, \, 3\\ 0\, \, 1\, \, 0\, \, 0\, \, 0\\ 2\, \, 5\, \, 0\, \, 0\, \, 4\\ 0\, \, 3\, \, 0\, \, 4\, \, 0 \end{Bmatrix}设定邻近度为5

(1)G(0):刚开始都是点,没有边,每个点都是一个簇,有n个点就是有n个簇。

(2)G(1):根据邻近度矩阵,找1,发现(2,3)满足条件

(3)G(2):找2,发现

(4)G(3):(2,5)

(5)G(4):设定不超过5,所以4是最后一个(4,5)

我们做聚类,最后把它拉成树状图:

总结

EAC步骤:

n ---维数    k---初始簇数   N---聚类数   t---阙值   邻近度矩阵设为空

(1)做N次:1.随机选择K聚类中心;2.初始化用K-Means,生成分区P;3.更新关联度矩阵,对P中同一集群中每对ij更新

(2)用SL找到一致性簇:1.投票法找到多数关联,对每对(i,j)合并到统一集群;2.没包含集群里剩下的做单个集群。

 

本人尚才疏学浅,如内容中有任何错误的地方,望告知,我会加以修改,之后会继续更新。

这篇关于集成聚类之EAC算法(证据积累数据聚类)附:单连接(SL)易理解详谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352372

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con