Python-matplotlib定制化刻度(主副)绘制

2023-11-04 05:30

本文主要是介绍Python-matplotlib定制化刻度(主副)绘制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号后台回复“图书“,了解更多号主新书内容

作者:宁海涛

来源:DataCharm

  • Python-matplotlib 定制化图例绘制

  • Python-双Y轴绘制图表元素完善

  • 双Y轴图例等熟悉添加

Python-matplotlib 定制化图例绘制

本期的推文绘制我们的参考图例来源于以下图表:可以看出:

  1. 图表是双Y轴的绘制

  2. 图表的x轴刻度绘制较为复杂(也是本期的重点内容),如下:

由于没有原始数据,我们使用Python进行虚构,构造的数据预览如下(部分):

data列用于绘制柱形图(bar plot),line_data列用于绘制第二个Y轴的点线图(line plot)

数据处理

通过观察原始图表,我们可以知道,原图的x轴刻度是一年的12个月份,即[2,4,6,8,10,12]的重复,由于较难对刻度进行ticker的编写,这里我们直接采用最粗暴的方法-直接命名刻度label方法进行操作,构建方式如下:

tick_label = ['',"2",'','4','','6','','8','','10','','12']*4

这里我是虚构的4年数据哈,而使用‘’用于替代不显示的[1,3,5,7,9,11]的刻度位置,接下来我们直接绘图。

初步绘图探索

要想绘制该类刻度形式,我们就需要灵活操作主(major)、副(minor)刻度范围及刻度label,绘图代码如下:

from matplotlib.pyplot import MultipleLocatorplt.rcParams['font.family'] = "Times New Roman"
x = np.arange(len(data_all_df))fig,ax = plt.subplots(figsize=(9,5),dpi=100)
bar_plot = ax.bar(x,data_all_df["data"].values,color="gray",width=.5)
#定制化操作
#设置轴范围
ax.set_ylim(bottom=-30,top=300)
ax.set_xlim(left=-.7,right=47.7)
ax.set_xticks(x) #设置这一步操作,要不然刻度往左移
ax.spines["top"].set_visible(False)
#设置x轴刻度label
ax.set_xticklabels(tick_label)#设置主副刻度
#把x轴的主刻度间隔设置为.5,并存在变量里
x_major_locator=MultipleLocator(1)
#把x轴的副刻度间隔设置为.5,并存在变量里
x_minor_locator=MultipleLocator(.5)
#调用刻度设置
ax.xaxis.set_minor_locator(x_minor_locator)
ax.xaxis.set_major_locator(x_major_locator)ax.tick_params(axis='y',direction='in',labelsize=8,length=3.5)
ax.tick_params(axis='x',which="major",direction='in',bottom=False,labelsize=8,length=3,width=.4)
#定制化副刻度ax.tick_params(axis="x",which="minor",direction="out",length=10,width=.4)
#设置刻度轴脊的位置:较重要的方法
ax.spines['bottom'].set_position(('data', 0))

知识点:

  1. 设置主副刻度

x_major_locator=MultipleLocator(1)
#把x轴的副刻度间隔设置为.5,并存在变量里
x_minor_locator=MultipleLocator(.5)
#调用刻度设置
ax.xaxis.set_minor_locator(x_minor_locator)
ax.xaxis.set_major_locator(x_major_locator)
  1. 刻度形式操作

ax.tick_params(axis='y',direction='in',labelsize=8,length=3.5)
ax.tick_params(axis='x',which="major",direction='in',bottom=False,labelsize=8,length=3,width=.4)
ax.tick_params(axis="x",which="minor",direction="out",length=10,width=.4)
  1. 设置刻度轴脊的位置:较重要的方法

ax.spines['bottom'].set_position(('data', 0))

可视化结果如下:我们可以发现,图中的刻度已经蛮符合胡子hi要求了(如下):但是当我继续想添加年份的分割刻度时,已这种方式为基础的绘图将很难实现,最终我们选择直接主刻度定义年份,副刻度定义月份的操作,通过对其定制化操作,达到我们的绘图需求。

绘图完善

这里我们直接给出代码,如下:

from matplotlib.pyplot import MultipleLocator
import matplotlib.ticker as ticker
plt.rcParams['font.family'] = "Times New Roman"x = np.arange(len(data_all_df))
fig,ax = plt.subplots(figsize=(9,5),dpi=100)
bar_plot = ax.bar(x,data_all_df["data"].values,color="gray",width=.5,label="Bar Charts",zorder=2)
#定制化操作
ax.set_ylabel("Bar_Data_Value",size=12)
ax.set_xlabel("Month",size=12,labelpad=15)
#ax.set_xlabel()
ax.set_ylim(bottom=0,top=300)
ax.set_xlim(left=-.5,right=47.5)
#设置主刻度
ax.set_xticks(np.arange(-.5, 48.5, step=12)) #设置这一步操作,要不然刻度往左移
#设置副刻度
ax.set_xticks(np.arange(0, 48, step=1),minor=True)ax.spines["top"].set_visible(False)
#设置副刻度label
ax.set_xticklabels(tick_label,minor=True)
#添加 年数文本作为X轴信息
for i,text in zip([.125,.375,.625,.875],['2014','2015','2016','2017']):ax.text(i,-.08,text,transform = ax.transAxes,va="center",ha="center",fontweight="bold")
#或者如下操作设置主刻度
# positions = [-.5,11.5,23.5,35.5,47.5]
# ax.xaxis.set_major_locator(ticker.FixedLocator(positions))#添加双y轴:使用Axes.twinx()方法绘制
second_plot = ax.twinx()
#注意:这里必须要有, 后面的图例才可以生成
line_plot, = second_plot.plot(np.arange(len(data_all_df)),data_all_df["line_data"].values,"-D",ms=4,c="k",lw=.9,label="Line Charts")
second_plot.set_ylim((0,10000))
second_plot.tick_params(axis='y',direction='in',labelsize=10,length=3.5)
second_plot.set_ylabel("Line_Data_Value",size=12)
second_plot.set_axisbelow(True)
second_plot.spines["top"].set_visible(False)
ax.tick_params(axis='y',direction='in',labelsize=10,length=3.5)
ax.tick_params(axis='x',which="major",direction='out',labelbottom=False,length=25,width=.5)
ax.tick_params(axis="x",which="minor",bottom=False,direction="out",length=3,width=.4,pad=.01)
ax.set_axisbelow(True)# #添加图例
charts = [bar_plot, line_plot]
ax.legend(charts, [l.get_label() for l in charts],frameon=False)plt.savefig(r'\double_y_axis_plot_excise.png',width=7,height=3,dpi=900,bbox_inches='tight',facecolor='white')

知识点:

  1. 定义刻度位置及间隔

#设置主刻度
ax.set_xticks(np.arange(-.5, 48.5, step=12)) 
#设置副刻度
ax.set_xticks(np.arange(0, 48, step=1),minor=True)
  1. 使用Axes.twinx()添加双轴

second_plot = ax.twinx()
#注意:这里必须要有, 后面的图例才可以生成
line_plot, = second_plot.plot(np.arange(len(data_all_df)),data_all_df["line_data"].values,"-D",ms=4,c="k",lw=.9,label="Line Charts")

注意:这里必须要有, 后面的图例才可以生成3. 定制年份的刻度label文本

#添加 年数文本作为X轴信息
for i,text in zip([.125,.375,.625,.875],['2014','2015','2016','2017']):ax.text(i,-.08,text,transform = ax.transAxes,va="center",ha="center",fontweight="bold")
  1. 双Y轴图例添加

# #添加图例
charts = [bar_plot, line_plot]
ax.legend(charts, [l.get_label() for l in charts],frameon=False)

4.其他如刻度起始、间隔等设置大家可参考具体代码,根据自己需求进行修改。

最终我们的可视化结果如下:

◆ ◆ ◆  ◆ ◆麟哥新书已经在当当上架了,我写了本书:《拿下Offer-数据分析师求职面试指南》,目前当当正在举行100-50活动,大家可以用相当于原价5折的预购价格购买,还是非常划算的:
数据森麟公众号的交流群已经建立,许多小伙伴已经加入其中,感谢大家的支持。大家可以在群里交流关于数据分析&数据挖掘的相关内容,还没有加入的小伙伴可以扫描下方管理员二维码,进群前一定要关注公众号奥,关注后让管理员帮忙拉进群,期待大家的加入。
管理员二维码:
猜你喜欢
● 卧槽!原来爬取B站弹幕这么简单● 厉害了!麟哥新书登顶京东销量排行榜!● 笑死人不偿命的知乎沙雕问题排行榜
● 用Python扒出B站那些“惊为天人”的阿婆主!● 你相信逛B站也能学编程吗



这篇关于Python-matplotlib定制化刻度(主副)绘制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/343564

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑