【Java 数据结构 算法】宁可累死自己, 也要卷死别人 19 记事法

2023-11-04 02:59

本文主要是介绍【Java 数据结构 算法】宁可累死自己, 也要卷死别人 19 记事法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Java 数据结构 & 算法】⚠️宁可累死自己, 也要卷死别人 19⚠️ 记事法

概述

从今天开始, 小白我将带大家开启 Java 数据结构 & 算法的新篇章.

在这里插入图片描述

时间复杂度

时间复杂度 (Time Complexity) 用来描述一个算法运行的时间.

在这里插入图片描述

大 O 记事法

大 O 记事法 (Big O Notation) 是用来描述一个算法最坏的情况下的时间复杂度. 大 O 记事法可以描述一个算法的上界, 通过常用输入大小函数来表示算法的最大运行时间.

大 O 记事法的定义:

  • 当 f(n) 和 g(n) 满足 f ( n ) < = c ∗ g ( n ) f(n) <= c*g(n) f(n)<=cg(n), n > = n ( ₀ ) n >= n(₀) n>=n(), c > 0 c > 0 c>0, n ( ₀ ) > 1 n(₀) > 1 n()>1
  • 可以得到函数 (算法) 的时间复杂度为 f ( n ) = O ( g ( n ) ) f(n) = O(g(n)) f(n)=O(g(n))

举个栗子, 2 n + 3 2n + 3 2n+3 的图像为:

在这里插入图片描述
我们可以得到:

  • 2 n + 3 < = 5 ∗ n 2n + 3 <= 5 * n 2n+3<=5n, ( f ( n ) = 2 n + 3 f(n) = 2n + 3 f(n)=2n+3, c = 5 c = 5 c=5, g ( n ) = n g(n) = n g(n)=n)
  • 所以 2 n + 3 2n + 3 2n+3 的时间复杂度为 O ( n ) O(n) O(n)

Ω \Omega Ω 记事法

Ω \Omega Ω 记事法 (Big Ω \Omega Ω Notation) 是用来描述一个算法最好的情况下的时间复杂度. 大 Ω \Omega Ω 记事法可以描述一个算法的下界, 通过常用输入大小函数来表示算法的最小运行时间.

Ω \Omega Ω 记事法的定义:

  • 当 f(n) 和 g(n) 满足 f ( n ) > = c ∗ g ( n ) f(n) >= c*g(n) f(n)>=cg(n), n > = n ( ₀ ) n >= n(₀) n>=n(), c > 0 c > 0 c>0, n ( ₀ ) > 1 n(₀) > 1 n()>1
  • 可以得到函数 (算法) 的时间复杂度为 f ( n ) = Ω ( g ( n ) ) f(n) = \Omega(g(n)) f(n)=Ω(g(n))

举个栗子, 2 n + 3 2n + 3 2n+3 的图像为:

在这里插入图片描述
我们可以得到:

  • 2 n + 3 > = 1 ∗ n 2n + 3 >= 1 * n 2n+3>=1n, ( f ( n ) = 2 n + 3 f(n) = 2n + 3 f(n)=2n+3, c = 1 c = 1 c=1, g ( n ) = n g(n) = n g(n)=n)
  • 所以 2 n + 3 2n + 3 2n+3 的时间复杂度为 Ω ( n ) \Omega(n) Ω(n)

Θ \Theta Θ 记事法

Θ \Theta Θ 记事法 (Big Θ \Theta Θ Notation) 是用来描述一个算法平均情况下的时间复杂度. 大 Θ \Theta Θ 记事法可以描述一个算法的下界, 通过常用输入大小函数来表示算法的最小运行时间.

Θ \Theta Θ 记事法的定义:

  • 当 f(n) 和 g(n) 满足 c 1 ∗ g ( n ) < = f ( n ) < = c 2 ∗ g ( n ) c1*g(n) <= f(n) <= c2*g(n) c1g(n)<=f(n)<=c2g(n), n > = n ( ₀ ) n >= n(₀) n>=n(), c 1 , c 2 > 0 c1, c2 > 0 c1,c2>0, n ( ₀ ) > 1 n(₀) > 1 n()>1
  • 可以得到函数 (算法) 的时间复杂度为 f ( n ) = Θ ( g ( n ) ) f(n) = \Theta(g(n)) f(n)=Θ(g(n))

举个栗子, 2 n + 3 2n + 3 2n+3 的图像为:

在这里插入图片描述
我们可以得到:

  • 1 ∗ n < = 2 n + 3 < = 5 ∗ n 1*n <= 2n + 3 <= 5*n 1n<=2n+3<=5n, ( f ( n ) = 2 n + 3 f(n) = 2n + 3 f(n)=2n+3, c 1 = 1 c1 = 1 c1=1, c 2 = 5 c2 = 5 c2=5, g ( n ) = n g(n) = n g(n)=n)
  • 所以 2 n + 3 2n + 3 2n+3 的时间复杂度为 Θ ( n ) \Theta(n) Θ(n)

这篇关于【Java 数据结构 算法】宁可累死自己, 也要卷死别人 19 记事法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342751

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node