如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析

本文主要是介绍如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

硬核原创,转载请注明出处:
https://leytton.blog.csdn.net/article/details/130406553

一、前言

在用Pytorch图神经网络对化学分子进行数据分析的时候,经常使用现有的数据集。看到自动处理完毕的数据结构,里面的特征值让我们一脸懵逼,不知道代表的是什么含义。本文将带大家分析这些数据结构的来龙去脉。

二、数据原始特征

在使用图神经网络(GNN)对化学分子进行水溶性预测的实验中,加载了MoleculeNetESOL数据集。我们打开原始的csv文件,结构是这样的(非专业翻译,有误恳请留言纠正):

表头含义示例
Compound ID化合物ID2-pyrrolidone
ESOL predicted log solubility in mols per litreESOL预测对数溶解度(mol/L)0.243
Minimum Degree最小度1
Molecular Weight分子量85.10600000000001
Number of H-Bond Donors氢键供体数1
Number of Rings环数1
Number of Rotatable Bonds可旋转键数0
Polar Surface Area极性表面积29.1
measured log solubility in mols per litre测量对数溶解度(mol/L)1.07
smiles分子SMILES字符串O=C1CCCN1

从smiles中可以看到,这个分子有OCN、H(一般省略)四种元素,除去H有六个原子。

三、分析预处理数据

加载数据

如下面代码,加载ESOL数据集后将其打印出来:

from torch_geometric.datasets import MoleculeNetdata = MoleculeNet(root="data", name="ESOL")print("Dataset Size:", len(data))
print("Dataset classes:", data.num_classes)
print("Dataset features:", data.num_features)
Dataset Size: 1128
Dataset classes: 734
Dataset features: 9

从结果可以看到,有1128个分子样本,734种类型,每个分子有9个特征。

分析数据

我们选择第11个分子(smiles比较短)进行分析:

print("Sample:", data[10])
print("Sample y:", data[10].y)
Sample: Data(x=[6, 9], edge_index=[2, 12], edge_attr=[12, 3], smiles='O=C1CCCN1', y=[1, 1])
Sample y: tensor([[1.0700]])

可以看到x、edge_index、edge_attr 是二维数组,y可以看成一个值(水溶性)。

关于水溶性参考《理化性质|(logSw和logP)小分子化合物水溶性和脂溶性指标》

画出分子图

根据SMILES字符串,将其分子图画出来:

from rdkit import Chem
from rdkit.Chem import Drawmolecule = Chem.MolFromSmiles(data[10]["smiles"])
# Draw.MolToFile(molecule, "mol.png")
Draw.MolToImage(molecule)

在这里插入图片描述

edge_index数据分析

edge_index数组打印出来:

print(data[10].edge_index.T)
tensor([[0, 1],[1, 0],[1, 2],[1, 5],[2, 1],[2, 3],[3, 2],[3, 4],[4, 3],[4, 5],[5, 1],[5, 4]])

这是O、C、N六个原子的连接关系。

x数据分析

x数组打印出来:

print(data[10].x.shape)
print(data[10].x)
torch.Size([6, 9])
tensor([[8, 0, 1, 5, 0, 0, 3, 0, 0],[6, 0, 3, 5, 0, 0, 3, 0, 1],[6, 0, 4, 5, 2, 0, 4, 0, 1],[6, 0, 4, 5, 2, 0, 4, 0, 1],[6, 0, 4, 5, 2, 0, 4, 0, 1],[7, 0, 3, 5, 1, 0, 3, 0, 1]])

这就不太看得懂了,看起来像是描述6个原子9个特征的二维数组。

四、真相:从SMILES字符串得到

作者查阅资料无果,那么久只能去分析MoleculeNet中的代码了,到底对原始数据进行了怎样的处理,x中的数据是怎样来的。

点进去看到一个process函数应该是处理数据的,我对其进行了注释:

# Format: name: [display_name, url_name, csv_name, smiles_idx, y_idx]names = {'esol': ['ESOL', 'delaney-processed.csv', 'delaney-processed', -1, -2],'freesolv': ['FreeSolv', 'SAMPL.csv', 'SAMPL', 1, 2],'lipo': ['Lipophilicity', 'Lipophilicity.csv', 'Lipophilicity', 2, 1],'pcba': ['PCBA', 'pcba.csv.gz', 'pcba', -1,slice(0, 128)],'muv': ['MUV', 'muv.csv.gz', 'muv', -1,slice(0, 17)],'hiv': ['HIV', 'HIV.csv', 'HIV', 0, -1],'bace': ['BACE', 'bace.csv', 'bace', 0, 2],'bbbp': ['BBPB', 'BBBP.csv', 'BBBP', -1, -2],'tox21': ['Tox21', 'tox21.csv.gz', 'tox21', -1,slice(0, 12)],'toxcast':['ToxCast', 'toxcast_data.csv.gz', 'toxcast_data', 0,slice(1, 618)],'sider': ['SIDER', 'sider.csv.gz', 'sider', 0,slice(1, 28)],'clintox': ['ClinTox', 'clintox.csv.gz', 'clintox', 0,slice(1, 3)],}def process(self):with open(self.raw_paths[0], 'r') as f: #读取原始数据文件dataset = f.read().split('\n')[1:-1] #按行分割,并去掉第一行dataset = [x for x in dataset if len(x) > 0]  # 去掉空行data_list = []for line in dataset:  #遍历每行line = re.sub(r'\".*\"', '', line)  # 去掉".*"字符串line = line.split(',') #逗号分隔smiles = line[self.names[self.name][3]] #获取到smiles字符串ys = line[self.names[self.name][4]] #获取到y值ys = ys if isinstance(ys, list) else [ys] #将y值统一成数组形式ys = [float(y) if len(y) > 0 else float('NaN') for y in ys] #将y转成float类型y = torch.tensor(ys, dtype=torch.float).view(1, -1) #将y转成torch.float类型# 重点:获取x、edge_index、edge_attr数据,需要查看from_smiles函数data = from_smiles(smiles)  data.y = y  #y处理完毕if self.pre_filter is not None and not self.pre_filter(data):continueif self.pre_transform is not None:data = self.pre_transform(data)data_list.append(data)torch.save(self.collate(data_list), self.processed_paths[0])

从上面分析可以知道,原来x、edge_index、edge_attr数据都是通过将smile字符串传递到from_smiles函数获取到的!

from_smiles函数如下:

def from_smiles(smiles: str, with_hydrogen: bool = False,kekulize: bool = False) -> 'torch_geometric.data.Data':# 太多了省略。。。return Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles)

这下可以参考这个函数的代码进一步分析了。

我们直接指定smiles进行分析:

smiles='O=C1CCCN1'
from rdkit import Chemmol = Chem.MolFromSmiles(smiles)
for atom in mol.GetAtoms():print(f'原子序号:{atom.GetAtomicNum()}, 手性信息:{atom.GetChiralTag()}, 度:{atom.GetTotalDegree()}, 电荷:{atom.GetFormalCharge()}, 连接氢原子数:{atom.GetTotalNumHs()}, 自由基:{atom.GetNumRadicalElectrons()}, 杂化类型:{atom.GetHybridization()}, 芳香性:{atom.GetIsAromatic()}, 是否在环上:{atom.IsInRing()}')
原子序号:8, 手性信息:CHI_UNSPECIFIED, 度:1, 电荷:0, 连接氢原子数:0, 自由基:0, 杂化类型:SP2, 芳香性:False, 是否在环上:False
原子序号:6, 手性信息:CHI_UNSPECIFIED, 度:3, 电荷:0, 连接氢原子数:0, 自由基:0, 杂化类型:SP2, 芳香性:False, 是否在环上:True
原子序号:6, 手性信息:CHI_UNSPECIFIED, 度:4, 电荷:0, 连接氢原子数:2, 自由基:0, 杂化类型:SP3, 芳香性:False, 是否在环上:True
原子序号:6, 手性信息:CHI_UNSPECIFIED, 度:4, 电荷:0, 连接氢原子数:2, 自由基:0, 杂化类型:SP3, 芳香性:False, 是否在环上:True
原子序号:6, 手性信息:CHI_UNSPECIFIED, 度:4, 电荷:0, 连接氢原子数:2, 自由基:0, 杂化类型:SP3, 芳香性:False, 是否在环上:True
原子序号:7, 手性信息:CHI_UNSPECIFIED, 度:3, 电荷:0, 连接氢原子数:1, 自由基:0, 杂化类型:SP2, 芳香性:False, 是否在环上:True

如上所示,这9个特征就是x变量中每个原子的含义,对其进行一些编码变换就构造成了x变量。具体的原子更多的属性,可以参考 RDKit 文档

接下来我们分析edge_attredge_index变量含义:

for bond in mol.GetBonds(): #便利所有的键i = bond.GetBeginAtomIdx()j = bond.GetEndAtomIdx()print(f'连接:{i,j},{j,i}')print(f'键的类型:{bond.GetBondType()}, Stereo:{bond.GetStereo()}, 是否共轭:{bond.GetIsConjugated()}')
连接:(0, 1),(1, 0)
键的类型:DOUBLE, Stereo:STEREONONE, 是否共轭:True
连接:(1, 2),(2, 1)
键的类型:SINGLE, Stereo:STEREONONE, 是否共轭:False
连接:(2, 3),(3, 2)
键的类型:SINGLE, Stereo:STEREONONE, 是否共轭:False
连接:(3, 4),(4, 3)
键的类型:SINGLE, Stereo:STEREONONE, 是否共轭:False
连接:(4, 5),(5, 4)
键的类型:SINGLE, Stereo:STEREONONE, 是否共轭:False
连接:(5, 1),(1, 5)
键的类型:SINGLE, Stereo:STEREONONE, 是否共轭:True

这就是分子SMILES字符串转化成图数据结构的过程,可以看到只用到了原始数据里的SMILES字符串水溶性结果

在Pytorch官网找了半天没找到数据集的说明资料,等我分析完后,才发现,这里已经有大佬发表了相关文章。不过,如果不知道图结构数据是从SMILES字符串分析得到,很难通过关键字找到这些资料。
How to turn a SMILES string into a molecular graph for Pytorch Geometric

这篇关于如何将化学分子SMILES字符串转化为Pytorch图数据结构——ESOL分子水溶性数据集解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/337186

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em