51 个深度学习目标检测模型汇总,论文、源码一应俱全!

本文主要是介绍51 个深度学习目标检测模型汇总,论文、源码一应俱全!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI有道”,选择“星标”公众号

重磅干货,第一时间送达640?wx_fmt=jpeg

目标检测(Object Detection)是深度学习 CV 领域的一个核心研究领域和重要分支。纵观 2013 年到 2019 年,从最早的 R-CNN、Fast R-CNN 到后来的 YOLO v2、YOLO v3 再到今年的 M2Det,新模型层出不穷,性能也越来越好!本文将会对目标检测近几年的发展和相关论文做出一份系统介绍,总结一份超全的文献 paper 列表。

模型列表先一睹为快!(建议收藏

640?wx_fmt=png

这份目标检测超全的技术路线总结来自于 GitHub 上一个知名项目,作者是 Lee hoseong,项目地址是:

https://github.com/hoya012/deep_learning_object_detection

该技术路线横跨时间是 2014 年至 2019 年,上图总结了这期间目标检测所有重要的模型。图中标红的部分是作者认为比较重要,需要重点掌握的模型。当然每个人有都有各自的评价。

模型性能比较

FPS(速度)索引与硬件规格(如 CPU、GPU、RAM 等)有关,因此很难进行同等比较。解决方案是在具有相同规格的硬件上测量所有模型的性能,但这是非常困难和耗时的。比较结果如下:

640?wx_fmt=png

640?wx_fmt=png

下面举例对标红的重要模型进行介绍!

2014 年

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation | Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik | [CVPR' 14]

论文:

https://arxiv.org/pdf/1311.2524.pdf

代码 Caffe:

https://github.com/rbgirshick/rcnn

OverFeat

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | Pierre Sermanet, et al. | [ICLR' 14]

论文:

https://arxiv.org/pdf/1312.6229.pdf

代码 Torch:

https://github.com/sermanet/OverFeat

2015 年

Fast R-CNN

Fast R-CNN | Ross Girshick | [ICCV' 15]

论文:

https://arxiv.org/pdf/1504.08083.pdf

代码 caffe:

https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | Shaoqing Ren, et al. | [NIPS' 15]

论文:

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

代码 caffe:

https://github.com/rbgirshick/py-faster-rcnn

代码 tensorflow:

https://github.com/endernewton/tf-faster-rcnn

代码 pytorch:

https://github.com/jwyang/faster-rcnn.pytorch

2016 年

OHEM

Training Region-based Object Detectors with Online Hard Example Mining | Abhinav Shrivastava, et al. | [CVPR' 16]

论文:

https://arxiv.org/pdf/1604.03540.pdf

代码 caffe:

https://github.com/abhi2610/ohem

YOLO v1

You Only Look Once: Unified, Real-Time Object Detection | Joseph Redmon, et al. | [CVPR' 16]

论文:

https://arxiv.org/pdf/1506.02640.pdf

代码 c:

https://pjreddie.com/darknet/yolo/

SSD

Single Shot MultiBox Detector | Wei Liu, et al. | [ECCV' 16]

论文:

https://arxiv.org/pdf/1512.02325.pdf

代码 caffe:

https://github.com/weiliu89/caffe/tree/ssd

代码 tensorflow:

https://github.com/balancap/SSD-Tensorflow

代码 pytorch:

https://github.com/amdegroot/ssd.pytorch

R-FCN

Object Detection via Region-based Fully Convolutional Networks | Jifeng Dai, et al. | [NIPS' 16]

论文:

https://arxiv.org/pdf/1605.06409.pdf

代码 caffe:

https://github.com/daijifeng001/R-FCN

代码 caffe:

https://github.com/YuwenXiong/py-R-FCN

2017 年

YOLO v2

Better, Faster, Stronger | Joseph Redmon, Ali Farhadi | [CVPR' 17]

论文:

https://arxiv.org/pdf/1612.08242.pdf

代码 c:

https://pjreddie.com/darknet/yolo/

代码 caffe:

https://github.com/quhezheng/caffe_yolo_v2

代码 tensorflow:

https://github.com/nilboy/tensorflow-yolo

代码 tensorflow:

https://github.com/sualab/object-detection-yolov2

代码 pytorch:

https://github.com/longcw/yolo2-pytorch

FPN

Feature Pyramid Networks for Object Detection | Tsung-Yi Lin, et al. | [CVPR' 17]

论文:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf

代码 caffe:

https://github.com/unsky/FPN

RetinaNet

Focal Loss for Dense Object Detection | Tsung-Yi Lin, et al. | [ICCV' 17]

论文:

https://arxiv.org/pdf/1708.02002.pdf

代码 keras:

https://github.com/fizyr/keras-retinanet

代码 pytorch:

https://github.com/kuangliu/pytorch-retinanet

代码 mxnet:

https://github.com/unsky/RetinaNet

代码 tensorflow:

https://github.com/tensorflow/tpu/tree/master/models/official/retinanet

Mask R-CNN

Kaiming He, et al. | [ICCV' 17]

论文:

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

代码 caffe2:

https://github.com/facebookresearch/Detectron

代码 tensorflow:

https://github.com/matterport/Mask_RCNN

代码 tensorflow:

https://github.com/CharlesShang/FastMaskRCNN

代码 pytorch:

https://github.com/multimodallearning/pytorch-mask-rcnn

2018 年

YOLO v3

An Incremental Improvement | Joseph Redmon, Ali Farhadi | [arXiv' 18]

论文:

https://pjreddie.com/media/files/papers/YOLOv3.pdf

代码 c:

https://pjreddie.com/darknet/yolo/

代码 pytorch:

https://github.com/ayooshkathuria/pytorch-yolo-v3

代码 pytorch:

https://github.com/eriklindernoren/PyTorch-YOLOv3

代码 keras:

https://github.com/qqwweee/keras-yolo3

代码 tensorflow:

https://github.com/mystic123/tensorflow-yolo-v3

RefineDet

Single-Shot Refinement Neural Network for Object Detection | Shifeng Zhang, et al. | [CVPR' 18]

论文:

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf

代码 caffe:

https://github.com/sfzhang15/RefineDet

代码 chainer:

https://github.com/fukatani/RefineDet_chainer

代码 pytorch:

https://github.com/lzx1413/PytorchSSD

2019 年

M2Det

A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | Qijie Zhao, et al. | [AAAI' 19]

论文:

https://arxiv.org/pdf/1811.04533.pdf

参考文献

该项目的参考文献来自于论文《Deep Learning for Generic Object Detection: A Survey

论文地址:

https://arxiv.org/pdf/1809.02165v1.pdf

640?wx_fmt=gif

【推荐阅读】

干货 | 公众号历史文章精选(附资源)

我的深度学习入门路线

我的机器学习入门路线图

640?wx_fmt=jpeg

?加入 AI 视界,离人工智能更进一步!

这篇关于51 个深度学习目标检测模型汇总,论文、源码一应俱全!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/333229

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和