机器人控制算法——TEB算法障碍物检测分析

2023-11-02 09:36

本文主要是介绍机器人控制算法——TEB算法障碍物检测分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.Background

在规划路线的时,需要机器人路线附近的障碍物距离,机器人控制系统需要知道当前机器人与障碍物最短的距离。本文主要是分析如何计算机器人与障碍物的距离,如果将机器人和障碍物分别考虑成质点,机器人与障碍物的距离就很容易求解了,但是事实上,障碍物与机器人在实际工程中不可能是质点。因此,本文需要解决的是:
机器人形状分别圆形、线性、多边形,障碍物也分别是圆形、线性、多边形时,二者的最小距离求解。

2.Algorithm

TEB算法的障碍物程序的入口在此处:

void TebOptimalPlanner::AddEdgesObstacles(double weight_multiplier){if (cfg_->optim.weight_obstacle==0 || weight_multiplier==0 || obstacles_==nullptr )return; // if weight equals zero skip adding edges!bool inflated = cfg_->obstacles.inflation_dist > cfg_->obstacles.min_obstacle_dist;Eigen::Matrix<double,1,1> information;information.fill(cfg_->optim.weight_obstacle * weight_multiplier);//mat.fill(n) 将 mat 的所有元素均赋值为 nEigen::Matrix<double,2,2> information_inflated;information_inflated(0,0) = cfg_->optim.weight_obstacle * weight_multiplier;information_inflated(1,1) = cfg_->optim.weight_inflation;information_inflated(0,1) = information_inflated(1,0) = 0;std::vector<Obstacle*> relevant_obstacles;relevant_obstacles.reserve(obstacles_->size());// iterate all teb points (skip first and last)for (int i=1; i < teb_.sizePoses()-1; ++i){double left_min_dist = std::numeric_limits<double>::max();double right_min_dist = std::numeric_limits<double>::max();Obstacle* left_obstacle = nullptr;Obstacle* right_obstacle = nullptr;relevant_obstacles.clear();const Eigen::Vector2d pose_orient = teb_.Pose(i).orientationUnitVec();// iterate obstaclesfor (const ObstaclePtr& obst : *obstacles_){// we handle dynamic obstacles differently below  //我们以不同的方式处理下面的动态障碍if(cfg_->obstacles.include_dynamic_obstacles && obst->isDynamic())continue;// calculate distance to robot model// //! 根据不同的机器人模型(点,圆,多边形等),不同的障碍物模型(点,线,多边形),有不同的距离计算方法double dist = robot_model_->calculateDistance(teb_.Pose(i), obst.get());
1. 机器人是圆形时
(1)障碍物是圆形时:
        /*** @brief Calculate the distance between the robot and an obstacle* @param current_pose Current robot pose* @param obstacle Pointer to the obstacle* @return Euclidean distance to the robot*/virtual double calculateDistance(const PoseSE2& current_pose, const Obstacle* obstacle) const{return obstacle->getMinimumDistance(current_pose.position()) - radius_;}
        // implements getMinimumDistance() of the base classvirtual double getMinimumDistance(const Eigen::Vector2d& position) const{return (position-pos_).norm() - radius_;}

使用机器人坐标计算出机器人坐标与障碍物坐标的距离,然后再分别减去机器人的半径radius_和障碍物的半径radius_即可

(2)障碍物是多边形
 virtual double getMinimumDistance(const Eigen::Vector2d& position) const{return distance_point_to_polygon_2d(position, vertices_);}
/*** @brief Helper function to calculate the smallest distance between a point and a closed polygon* @param point 2D point* @param vertices Vertices describing the closed polygon (the first vertex is not repeated at the end)* @return smallest distance between point and polygon
*/inline double distance_point_to_polygon_2d(const Eigen::Vector2d& point, const Point2dContainer& vertices){double dist = HUGE_VAL;// the polygon is a pointif (vertices.size() == 1){return (point - vertices.front()).norm();}// check each polygon edgefor (int i=0; i<(int)vertices.size()-1; ++i){double new_dist = distance_point_to_segment_2d(point, vertices.at(i), vertices.at(i+1));
//       double new_dist = calc_distance_point_to_segment( position,  vertices.at(i), vertices.at(i+1));if (new_dist < dist)dist = new_dist;}if (vertices.size()>2) // if not a line close polygon 数组头和尾顶点的边也要算上{double new_dist = distance_point_to_segment_2d(point, vertices.back(), vertices.front()); // check last edgeif (new_dist < dist)return new_dist;}return dist;}

position是机器人圆心位置坐标,vertices_为多边形的顶点,我们会使用循环计算出来,机器人位置与多边形的每条边的距离(本质就是点到直线距离的求解),然后取最小,最小的距离再减去机器人圆形的半径就是机器人距离障碍物的最小距离。

2. 机器人是多变形
障碍物是多边形时,这种是最复杂的情况求解。
          * @brief Calculate the distance between the robot and an obstacle* @param current_pose Current robot pose* @param obstacle Pointer to the obstacle* @return Euclidean distance to the robot*/virtual double calculateDistance(const PoseSE2& current_pose, const Obstacle* obstacle) const{Point2dContainer polygon_world(vertices_.size());transformToWorld(current_pose, polygon_world);return obstacle->getMinimumDistance(polygon_world);}
       // implements getMinimumDistance() of the base classvirtual double getMinimumDistance(const Point2dContainer& polygon) const{return distance_polygon_to_polygon_2d(polygon, vertices_);}

polygon代表机器人的多边形形状的顶点, vertices_代表障碍物的多边形的顶点。

/*** @brief Helper function to calculate the smallest distance between two closed polygons* @param vertices1 Vertices describing the first closed polygon (the first vertex is not repeated at the end)* @param vertices2 Vertices describing the second closed polygon (the first vertex is not repeated at the end)* @return smallest distance between point and polygon
*/inline double distance_polygon_to_polygon_2d(const Point2dContainer& vertices1, const Point2dContainer& vertices2){double dist = HUGE_VAL;// the polygon1 is a pointif (vertices1.size() == 1){return distance_point_to_polygon_2d(vertices1.front(), vertices2);}// check each edge of polygon1for (int i=0; i<(int)vertices1.size()-1; ++i){double new_dist = distance_segment_to_polygon_2d(vertices1[i], vertices1[i+1], vertices2);if (new_dist < dist)dist = new_dist;}if (vertices1.size()>2) // if not a line close polygon1{double new_dist = distance_segment_to_polygon_2d(vertices1.back(), vertices1.front(), vertices2); // check last edgeif (new_dist < dist)return new_dist;}return dist;}

这个代码的思路就是,以障碍物的顶点为准,然后循环计算该顶点和机器人的多边形每个边的距离(本质也是点到直线距离,很容易求解)并记录最短距离,然后障碍物的顶点遍历完即可,这样找对了最小距离。

3.Summary

上述没有介绍全,机器人有好多形状,障碍物也有好多形状,二者随机组合,就会出现不同的距离求解方法,具体可去看TEB开源代码。

这篇关于机器人控制算法——TEB算法障碍物检测分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329697

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期