图像二值化阈值调整——OTSU算法(大津法/最大类间方差法)

本文主要是介绍图像二值化阈值调整——OTSU算法(大津法/最大类间方差法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大津算法(OTSU算法)是一种常用的图像二值化方法,用于将灰度图像转化为二值图像。该算法由日本学者大津展之于1979年提出,因此得名。

大津算法的核心思想是通过寻找一个阈值,将图像的像素分为两个类别:前景和背景。具体步骤如下:

  1. 统计图像的灰度直方图,得到每个灰度级的像素数目。
  2. 遍历所有可能的阈值(0到255),计算根据该阈值将图像分为前景和背景的类内方差。
  3. 根据类内方差的最小值确定最佳阈值。

在大津算法中,类内方差是衡量前景和背景之间差异的度量。通过选择使类内方差最小的阈值,可以实现最佳的图像分割效果。

大津算法的优点是简单易懂,计算效率高。它适用于灰度图像的二值化处理,特别是对于具有双峰直方图的图像效果更好。然而,该算法对于具有非双峰直方图的图像可能产生较差的分割结果。因此,在应用大津算法之前,需要对图像的直方图进行分析,确保适用性。

大津算法在图像处理中被广泛应用,例如在文档图像处理、目标检测、图像分割等领域。

下面推导类间方差函数:

设阈值为灰度k(k\in \left [ 0,L-1 \right ],L=256)。这个阈值把图像像素分割成两类,C1类像素小于等于k,C2类像素大于k。设这两类像素各自的均值为m_1,m_2,图像全局均值为m_G。同时像素被分为C1和C2类的概率分别为p_1,p_2。则有:

p_1m_1+p_2m_2=m_G

p_1+p_2=1

根据方差的概念,类间方差表达式为:

\sigma ^2=p_1\left ( m_1-m_G \right )^2+p_2\left ( m_2-m_G \right )^2

展开:

\sigma ^2=p_1m_1^2+p_1m_G^2-2p_1m_1m_G+p_2m_2^2+p_2m_G^2-2p_2m_2m_G

合并2,5及3,6项可得:

\sigma ^2=p_1m_1^2+p_2m_2^2+m_G^2-2m_G^2=p_1m_1^2+p_2m_2^2-m_G^2

我们再把m_G=p_1m_1+p_2m_2代回得到:

\sigma ^2=(p_1-p_1^2)m_1^2+(p_2-p_2^2)m_2^2-2p_1p_2m_1m_2

再注意到p_1+p_2=1,所以p_1-p_1^2=p_1(1-p_1)=p_1p_2p_2-p_2^2=p_2(1-p_2)=p_1p_2,从而得到:

\sigma ^2=p_1p_2(m_1-m_2)^2

对于给定的阈值k,我们可以统计出灰度级的分布列:

灰度值01...255
p_ip_0p_1...p_{255}

显然根据分布列性质有\sum_{i=0}^{L-1}p_i=1(请注意这里的p_1,p_2是分布列中的,不是上面的定义)

那么有:

p_1=\sum_{i=0}^{k-1}p_i,p_2=\sum_{i=k}^{L-1}p_i,m_1=\sum_{i=0}^{k-1}ip_i,m_2=\sum_{i=k}^{L-1}ip_i

将k从\left [ 0,L-1 \right ]遍历,找出使得\sigma ^2最大的k值,这个k值就是阈值。

对于分割,这个分割就是二值化,OpenCV给了以下几种方式(同threshold):

cv2帮助文档:

Miscellaneous Image Transformations — OpenCV 3.0.0-dev documentationicon-default.png?t=N7T8https://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#threshold代码实现:

首先是原理部分的实现,这部分我们使用numpy:

import cv2
import numpy as npdef OTSU(img_gray, GrayScale):assert img_gray.ndim == 2, "must input a gary_img"  # shape有几个数字, ndim就是多少img_gray = np.array(img_gray).ravel().astype(np.uint8)u1 = 0.0  # 背景像素的平均灰度值u2 = 0.0  # 前景像素的平均灰度值th = 0.0# 总的像素数目PixSum = img_gray.size# 各个灰度值的像素数目PixCount = np.zeros(GrayScale)# 各灰度值所占总像素数的比例PixRate = np.zeros(GrayScale)# 统计各个灰度值的像素个数for i in range(PixSum):# 默认灰度图像的像素值范围为GrayScalePixvalue = img_gray[i]PixCount[Pixvalue] = PixCount[Pixvalue] + 1# 确定各个灰度值对应的像素点的个数在所有的像素点中的比例。for j in range(GrayScale):PixRate[j] = PixCount[j] * 1.0 / PixSumMax_var = 0# 确定最大类间方差对应的阈值for i in range(1, GrayScale):  # 从1开始是为了避免w1为0.u1_tem = 0.0u2_tem = 0.0# 背景像素的比列w1 = np.sum(PixRate[:i])# 前景像素的比例w2 = 1.0 - w1if w1 == 0 or w2 == 0:passelse:  # 背景像素的平均灰度值for m in range(i):u1_tem = u1_tem + PixRate[m] * mu1 = u1_tem * 1.0 / w1# 前景像素的平均灰度值for n in range(i, GrayScale):u2_tem = u2_tem + PixRate[n] * nu2 = u2_tem / w2# print(u1)# 类间方差公式:G=w1*w2*(u1-u2)**2tem_var = w1 * w2 * np.power((u1 - u2), 2)# print(tem_var)# 判断当前类间方差是否为最大值。if Max_var < tem_var:Max_var = tem_var  # 深拷贝,Max_var与tem_var占用不同的内存空间。th = ireturn thdef main():img = cv2.imread('6.jpg', 0)# 将图片转为灰度图th = OTSU(img, 256)print("使用numpy的方法:" + str(th))  # 结果为 136main()

然后是基于cv2的OTSU实现,cv2可直接指定使用:

import cv2
import matplotlib.pylab as pltdef main2():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)print(ret)  # 结果是135.0titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i+1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main2()

这篇关于图像二值化阈值调整——OTSU算法(大津法/最大类间方差法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327029

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(