Lee Hung-yi强化学习 | (5) Q-learning用于连续动作 (NAF算法)

2023-11-01 12:20

本文主要是介绍Lee Hung-yi强化学习 | (5) Q-learning用于连续动作 (NAF算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Lee Hung-yi强化学习专栏系列博客主要转载自CSDN博主 qqqeeevvv,原专栏地址
课程视频
课件地址

普通的Q-learning比policy gradient比较容易实现,但是在处理连续动作(比如方向盘要转动多少度)的时候就会显得比较吃力。

因为如果action是离散的几个动作,那就可以把这几个动作都代到Q-function去算Q-value。但是如果action是连续的,此时action就是一个vector,vector里面又都有对应的value,那就没办法穷举所有的action去算Q-value。
在这里插入图片描述
先介绍2种容易想到但效果不一定好的方法

1. 穷举action

在这里插入图片描述
这个方法sample N个action,一个一个代到Q function里,看哪个a得到的Q value最大。

缺点:即便sample 很多很多个action,还是没办法把所有的action都穷举出来(因为它是连续动作)。这样就会导致结果不那么精确。

2. 使用梯度上升求Q value

在这里插入图片描述
使用gradient ascent来求解,看采取什么action能让Q-function得到最大的Q value。

缺点:
1)由于使用gradient ascent,可能得到的结果只是局部的最优解。
2)每次考虑采取哪个a前,都要做一次类似于train network的工作,这个运算量太大

以上两种方法是比较容易想到,但是效果不好的方法,下面介绍一个比较好的方法

3. Normalized Advantage Functions(NAF)

设计一个新的网络来解连续动作的最优化问题。

论文地址

先给出概念如下,后面再讲具体的。
在这里插入图片描述
此时Q value 由状态值函数V与动作价值函数 A 相加而得。
在这里插入图片描述
其中 x 表示状态State,u表示动作Action,θ 是对应的网络参数,A函数可以看成动作 u 在状态 x 下的优势。我们的目的就是要使网络输出的动作 u 所对应的Q值最大。

具体来说,如下:
在这里插入图片描述
从buffer里sample一个batch的transition ( s t , a t , r t , s t + 1 ) (s_t,a_t,r_t,s_{t+1}) (st,at,rt,st+1),新的Q function以状态 s t s_t st,动作 a t a_t at作为输入,依据输入的 s t s_t st得到输出 μ ( s t ) \mu (s_t) μ(st)(vector), Σ ( s t ) \Sigma (s_t) Σ(st)(matrix), V ( s t ) V(s_t) V(st)(scalar)

其中,在输出 Σ ( s t ) \Sigma (s_t) Σ(st)这个矩阵前,其实先输出了矩阵L,矩阵L是对角线都是正数的下三角矩阵。然后根据乔列斯基(Cholesky)分解,构造出最终的 Σ ( s t ) \Sigma (s_t) Σ(st)这个矩阵(对应上式的P矩阵)。

输入的动作a再与上面三个结果进行组合形成Q function,如下图:
在这里插入图片描述
a和 μ ( s ) \mu (s) μ(s)转置后,变成1行N列;与矩阵相乘;再与a和 μ ( s ) \mu (s) μ(s)(N行1列)相乘,最终变成一个普通的数值,即标量(scalar),再加上V(s)就是最后的Q value。另外,在状态s下要做出的action由 μ ( s ) \mu (s) μ(s)给出。这样,NAF就实现既输出动作action,也输出这个action对应的Q value。(这时候再看一下,上图的前三项其实就是类似于文章前面公式中的A函数(优势函数)。)

接下来看如何使Q function输出的Q value达到最大值,NAF的Q function:
在这里插入图片描述
优势函数(advantage function)可以看成 A ( s , a ) = − ( a − μ ( s ) ) 2 × P A(s,a) = -(a-\mu(s))^2\times P A(s,a)=(aμ(s))2×P,又因为P矩阵在论文中有设定为是正定的矩阵,那么A就是一个小于等于0的值。

所以,理想的情况就是当 μ ( s ) = a \mu (s) = a μ(s)=a,那么此时A函数达到最大值0,那么Q function也得到最大的Q value。

可能有人疑惑:
既然是通过 μ ( s ) \mu (s) μ(s)输出action,那输入的action是干什么的?
输入的action 是从transition中sample的动作,是起到训练网络中的label的作用。目的是让网络输出的 μ ( s ) \mu (s) μ(s)不偏离 a 太多并且希望最后 μ ( s ) \mu (s) μ(s)逐点收敛于a,从而得到最大的Q value。

下图为NAF执行过程(图参考自)
在这里插入图片描述
NAF伪代码如下:
在这里插入图片描述
Normalized Advantage Functions(NAF)更多内容可参考以下博文:
https://blog.csdn.net/lipengcn/article/details/81840756
https://blog.csdn.net/u013236946/article/details/73243310
https://zhuanlan.zhihu.com/p/21609472

4. 不使用Q-learning而使用actor-critic

在这里插入图片描述

这篇关于Lee Hung-yi强化学习 | (5) Q-learning用于连续动作 (NAF算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322935

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时