scrapy 教程 MySQL_详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

本文主要是介绍scrapy 教程 MySQL_详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

获取要爬取的URL

773cecffaacae937b98c20e2c693ce8e.png

149ead1e9d9c6e6e99f45bfac9f5056d.png

432af78e253e3ca6efc9dd6c36391062.png

819a159bedcaf0a8f3303ecce2fd64e7.png

799afe868bc134b9840af2a081b7c019.png

d0f3bbb92a5996947732ff095ed4de8d.png

爬虫前期工作

c0906de3d638a492c6889a783383adbd.png

用Pycharm打开项目开始写爬虫文件

字段文件items

# Define here the models for your scraped items

#

# See documentation in:

# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy

class NbaprojectItem(scrapy.Item):

# define the fields for your item here like:

# name = scrapy.Field()

# pass

# 创建字段的固定格式-->scrapy.Field()

# 英文名

engName = scrapy.Field()

# 中文名

chName = scrapy.Field()

# 身高

height = scrapy.Field()

# 体重

weight = scrapy.Field()

# 国家英文名

contryEn = scrapy.Field()

# 国家中文名

contryCh = scrapy.Field()

# NBA球龄

experience = scrapy.Field()

# 球衣号码

jerseyNo = scrapy.Field()

# 入选年

draftYear = scrapy.Field()

# 队伍英文名

engTeam = scrapy.Field()

# 队伍中文名

chTeam = scrapy.Field()

# 位置

position = scrapy.Field()

# 东南部

displayConference = scrapy.Field()

# 分区

division = scrapy.Field()

爬虫文件

import scrapy

import json

from nbaProject.items import NbaprojectItem

class NbaspiderSpider(scrapy.Spider):

name = 'nbaSpider'

allowed_domains = ['nba.com']

# 第一次爬取的网址,可以写多个网址

# start_urls = ['http://nba.com/']

start_urls = ['https://china.nba.com/static/data/league/playerlist.json']

# 处理网址的response

def parse(self, response):

# 因为访问的网站返回的是json格式,首先用第三方包处理json数据

data = json.loads(response.text)['payload']['players']

# 以下列表用来存放不同的字段

# 英文名

engName = []

# 中文名

chName = []

# 身高

height = []

# 体重

weight = []

# 国家英文名

contryEn = []

# 国家中文名

contryCh = []

# NBA球龄

experience = []

# 球衣号码

jerseyNo = []

# 入选年

draftYear = []

# 队伍英文名

engTeam = []

# 队伍中文名

chTeam = []

# 位置

position = []

# 东南部

displayConference = []

# 分区

division = []

# 计数

count = 1

for i in data:

# 英文名

engName.append(str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn']))

# 中文名

chName.append(str(i['playerProfile']['firstName'] + i['playerProfile']['lastName']))

# 国家英文名

contryEn.append(str(i['playerProfile']['countryEn']))

# 国家中文

contryCh.append(str(i['playerProfile']['country']))

# 身高

height.append(str(i['playerProfile']['height']))

# 体重

weight.append(str(i['playerProfile']['weight']))

# NBA球龄

experience.append(str(i['playerProfile']['experience']))

# 球衣号码

jerseyNo.append(str(i['playerProfile']['jerseyNo']))

# 入选年

draftYear.append(str(i['playerProfile']['draftYear']))

# 队伍英文名

engTeam.append(str(i['teamProfile']['code']))

# 队伍中文名

chTeam.append(str(i['teamProfile']['displayAbbr']))

# 位置

position.append(str(i['playerProfile']['position']))

# 东南部

displayConference.append(str(i['teamProfile']['displayConference']))

# 分区

division.append(str(i['teamProfile']['division']))

# 创建item字段对象,用来存储信息 这里的item就是对应上面导的NbaprojectItem

item = NbaprojectItem()

item['engName'] = str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn'])

item['chName'] = str(i['playerProfile']['firstName'] + i['playerProfile']['lastName'])

item['contryEn'] = str(i['playerProfile']['countryEn'])

item['contryCh'] = str(i['playerProfile']['country'])

item['height'] = str(i['playerProfile']['height'])

item['weight'] = str(i['playerProfile']['weight'])

item['experience'] = str(i['playerProfile']['experience'])

item['jerseyNo'] = str(i['playerProfile']['jerseyNo'])

item['draftYear'] = str(i['playerProfile']['draftYear'])

item['engTeam'] = str(i['teamProfile']['code'])

item['chTeam'] = str(i['teamProfile']['displayAbbr'])

item['position'] = str(i['playerProfile']['position'])

item['displayConference'] = str(i['teamProfile']['displayConference'])

item['division'] = str(i['teamProfile']['division'])

# 打印爬取信息

print("传输了",count,"条字段")

count += 1

# 将字段交回给引擎 -> 管道文件

yield item

配置文件->开启管道文件

387a6b273abefb6342894be859cbf2b7.png

e8df7bdab48b4365a00c7213f92166cc.png

# Scrapy settings for nbaProject project

#

# For simplicity, this file contains only settings considered important or

# commonly used. You can find more settings consulting the documentation:

#

# https://docs.scrapy.org/en/latest/topics/settings.html

# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html

# https://docs.scrapy.org/en/latest/topics/spider-middleware.html

# ----------不做修改部分---------

BOT_NAME = 'nbaProject'

SPIDER_MODULES = ['nbaProject.spiders']

NEWSPIDER_MODULE = 'nbaProject.spiders'

# ----------不做修改部分---------

# Crawl responsibly by identifying yourself (and your website) on the user-agent

#USER_AGENT = 'nbaProject (+http://www.yourdomain.com)'

# Obey robots.txt rules

# ----------修改部分(可以自行查这是啥东西)---------

# ROBOTSTXT_OBEY = True

# ----------修改部分---------

# Configure maximum concurrent requests performed by Scrapy (default: 16)

#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)

# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay

# See also autothrottle settings and docs

#DOWNLOAD_DELAY = 3

# The download delay setting will honor only one of:

#CONCURRENT_REQUESTS_PER_DOMAIN = 16

#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)

#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)

#TELNETCONSOLE_ENABLED = False

# Override the default request headers:

#DEFAULT_REQUEST_HEADERS = {

# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',

# 'Accept-Language': 'en',

#}

# Enable or disable spider middlewares

# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html

#SPIDER_MIDDLEWARES = {

# 'nbaProject.middlewares.NbaprojectSpiderMiddleware': 543,

#}

# Enable or disable downloader middlewares

# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html

#DOWNLOADER_MIDDLEWARES = {

# 'nbaProject.middlewares.NbaprojectDownloaderMiddleware': 543,

#}

# Enable or disable extensions

# See https://docs.scrapy.org/en/latest/topics/extensions.html

#EXTENSIONS = {

# 'scrapy.extensions.telnet.TelnetConsole': None,

#}

# Configure item pipelines

# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html

# 开启管道文件

# ----------修改部分---------

ITEM_PIPELINES = {

'nbaProject.pipelines.NbaprojectPipeline': 300,

}

# ----------修改部分---------

# Enable and configure the AutoThrottle extension (disabled by default)

# See https://docs.scrapy.org/en/latest/topics/autothrottle.html

#AUTOTHROTTLE_ENABLED = True

# The initial download delay

#AUTOTHROTTLE_START_DELAY = 5

# The maximum download delay to be set in case of high latencies

#AUTOTHROTTLE_MAX_DELAY = 60

# The average number of requests Scrapy should be sending in parallel to

# each remote server

#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0

# Enable showing throttling stats for every response received:

#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)

# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings

#HTTPCACHE_ENABLED = True

#HTTPCACHE_EXPIRATION_SECS = 0

#HTTPCACHE_DIR = 'httpcache'

#HTTPCACHE_IGNORE_HTTP_CODES = []

#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

管道文件 -> 将字段写进mysql

# Define your item pipelines here

#

# Don't forget to add your pipeline to the ITEM_PIPELINES setting

# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html

# useful for handling different item types with a single interface

from itemadapter import ItemAdapter

import pymysql

class NbaprojectPipeline:

# 初始化函数

def __init__(self):

# 连接数据库 注意修改数据库信息

self.connect = pymysql.connect(host='域名', user='用户名', passwd='密码',

db='数据库', port=端口号)

# 获取游标

self.cursor = self.connect.cursor()

# 创建一个表用于存放item字段的数据

createTableSql = """

create table if not exists `nbaPlayer`(

playerId INT UNSIGNED AUTO_INCREMENT,

engName varchar(80),

chName varchar(20),

height varchar(20),

weight varchar(20),

contryEn varchar(50),

contryCh varchar(20),

experience int,

jerseyNo int,

draftYear int,

engTeam varchar(50),

chTeam varchar(50),

position varchar(50),

displayConference varchar(50),

division varchar(50),

primary key(playerId)

)charset=utf8;

"""

# 执行sql语句

self.cursor.execute(createTableSql)

self.connect.commit()

print("完成了创建表的工作")

#每次yield回来的字段会在这里做处理

def process_item(self, item, spider):

# 打印item增加观赏性

print(item)

# sql语句

insert_sql = """

insert into nbaPlayer(

playerId, engName,

chName,height,

weight,contryEn,

contryCh,experience,

jerseyNo,draftYear

,engTeam,chTeam,

position,displayConference,

division

) VALUES (null,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)

"""

# 执行插入数据到数据库操作

# 参数(sql语句,用item字段里的内容替换sql语句的占位符)

self.cursor.execute(insert_sql, (item['engName'], item['chName'], item['height'], item['weight']

, item['contryEn'], item['contryCh'], item['experience'], item['jerseyNo'],

item['draftYear'], item['engTeam'], item['chTeam'], item['position'],

item['displayConference'], item['division']))

# 提交,不进行提交无法保存到数据库

self.connect.commit()

print("数据提交成功!")

启动爬虫

87a84a0fb807dcf15ee87f453442fbab.png

屏幕上滚动的数据

9bb7b28c47e3e39fc891ceb046d71f1a.png

去数据库查看数据

7ef2cfb1fd6a41983bd7947c4f9ce3c1.png

简简单单就把球员数据爬回来啦~

到此这篇关于详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库的文章就介绍到这了,更多相关Scrapy爬虫员数据存放到Mysql内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

本文标题: 详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

本文地址: http://www.cppcns.com/shujuku/mysql/374912.html

这篇关于scrapy 教程 MySQL_详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322859

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq