AutoGen完整教程和加载本地LLM示例

2023-11-01 11:36

本文主要是介绍AutoGen完整教程和加载本地LLM示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Autogen是一个卓越的人工智能系统,它可以创建多个人工智能代理,这些代理能够协作完成任务,包括自动生成代码,并有效地执行任务。

在本文中,我们将深入探讨Autogen,并介绍如何让AutoGen使用本地的LLM

AutoGen

Autogen能够设置多个人工智能代理,它们协同工作以实现特定目标。以下截图来自微软官方博客

使用conda创建环境:

 conda create -n pyautogen python=3.10  conda activate pyautogen

AutoGen需要Python版本>= 3.8。它可以从pip安装:

 pip install pyautogen

编辑Python脚本(app.py),导入Autogen并设置配置。此配置包括定义想要使用的模型(例如,GPT 3.5 turbo)并提供API密钥。

目前AutoGen只能使用OpenAI的API,所以我们在后面介绍如何使用本地的LLM。

可以定义多个代理来处理不同的角色或任务,比如下面就创建了2个角色

 autogen.AssistantAgent(assistantname="CTO",Illm_config=llm_config)autogen.AssistantAgent(assistantname="CEO", Illm_config=llm_config)

定义任务和说明:希望代理执行的特定任务。这可以是任何指令,从编码到数据分析。

这样代理将根据指示开始执行任务。Assistant代理使用结果或代码片段进行响应。

使用本地的LLM

下面我们将演示如何让autogen使用本地的LLM。这里将使用FastChat作为LLM的本地媒介。

FastChat为其支持的模型提供了与OpenAI兼容的api,所以可以使用FastChat作为OpenAI api的本地替代。但是它的代码需要稍加修改才能正常工作。

 git clone https://github.com/lm-sys/FastChat.gitcd FastChat

ChatGLM-6B是基于通用语言模型(General language model, GLM)框架的开放式双语语言模型,具有62亿个参数。ChatGLM2-6B是其第二代产品。

 git clone https://huggingface.co/THUDM/chatglm2-6b

都下载完成后就可以使用了,先启动控制器:

 python -m fastchat.serve.controller

然后就是启动模型工作线程。

 python -m fastchat.serve.model_worker --model-path chatglm2-6b

最后是API:

 python -m fastchat.serve.openai_api_server --host localhost --port8000

注意:如果遇到这样的错误

 /root/anaconda3/envs/fastchat/lib/python3.9/runpy.py:197in_run_module_as_main││││194│main_globals=sys.modules["main"].dict││195│ifalter_argv: ││196││sys.argv[0] =mod_spec.origin││❱197│return_run_code(code, main_globals, None, ││198│││││"main", mod_spec) ││199││200defrun_module(mod_name, init_globals=None, │

注释掉fastchat/protocol/ api_protocol.py和fastchat/protocol/openai_api_protocol.py中包含finish_reason的所有行将解决问题。修改后的代码如下:

 classCompletionResponseChoice(BaseModel):index: inttext: strlogprobs: Optional[int] =None# finish_reason: Optional[Literal["stop", "length"]]classCompletionResponseStreamChoice(BaseModel):index: inttext: strlogprobs: Optional[float] =None# finish_reason: Optional[Literal["stop", "length"]] = None

使用下面的配置,autogen.oai.Completion和autogen.oai.ChatCompletion可以直接访问模型。

 fromautogenimportoai# create a text completion requestresponse=oai.Completion.create(config_list=[{"model": "chatglm2-6b","api_base": "http://localhost:8000/v1","api_type": "open_ai","api_key": "NULL", # just a placeholder}],prompt="Hi",)print(response)# create a chat completion requestresponse=oai.ChatCompletion.create(config_list=[{"model": "chatglm2-6b","api_base": "http://localhost:8000/v1","api_type": "open_ai","api_key": "NULL",}],messages=[{"role": "user", "content": "Hi"}])print(response)

在本地也可以使用多个模型:

 python -m fastchat.serve.multi_model_worker \--model-path lmsys/vicuna-7b-v1.3 \--model-names vicuna-7b-v1.3 \--model-path chatglm2-6b \--model-names chatglm2-6b

那么推理的代码如下(注意,你要有多卡或者显存足够):

 fromautogenimportoai# create a chat completion requestresponse=oai.ChatCompletion.create(config_list=[{"model": "chatglm2-6b","api_base": "http://localhost:8000/v1","api_type": "open_ai","api_key": "NULL",},{"model": "vicuna-7b-v1.3","api_base": "http://localhost:8000/v1","api_type": "open_ai","api_key": "NULL",}],messages=[{"role": "user", "content": "Hi"}])print(response)

总结

Autogen代理可以根据需要执行代码、生成报告和自动执行任务。他们可以协同高效地工作,节省时间和精力,我们还介绍了如何在本地使用,这样可以在本地进行测试,而不需要OpenAI的API。

微软的Autogen官网
https://avoid.overfit.cn/post/1e0f8d1ba2724b378d83cb4db3c4f9d3

这篇关于AutoGen完整教程和加载本地LLM示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322670

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数