代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++)

本文主要是介绍代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讀題

1143.最长公共子序列

自己看到题目的第一想法

看起來跟最長重複子数組很類似,但是要怎麼去推遞推的狀態沒有想法

看完代码随想录之后的想法

看完之後,大概釐清了整體想法,可以想成說,因為我們要考慮的是不連續的子序列,所以會分成兩種狀態,一個是不相同,不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的,因為這個緣故,在相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣,求出該值。 至於初始化的部分,在定義下標時,i、j都設定為i - 1 或者說 1 ~ i ,讓後續的遞推公式以及初始化都可以比較簡便。

1035.不相交的线

自己看到题目的第一想法

看到這題,看到卡哥的提示,觀察過後其實就跟最長的公共子序列一樣,如果有一個子序列是共有的,那最長的公共子序列一定是可以連接最多不相交的線,整體的概念是一致的。

53. 最大子序和

看完代码随想录之后的想法

其實整體概念跟連續遞增子序有點像,改為將数組變動 dp[i - 1] + nums[i] 以及 nums[i]的差異,看完程式碼後理解上不會太過於困難。

1143.最长公共子序列 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i - 1 的text1 以及 0 ~ j - 1 的text2 最长公共子序列長度為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的

    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

    相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣

    dp[i][j] = dp[i - 1][j - 1] + 1;

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp (text1.size() + 1, vector<int>(text2.size() + 1, 0));for(int i = 1; i < text1.size() + 1; i++) {for(int j = 1; j < text2.size() + 1; j++) {if(text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return dp[text1.size()][text2.size()];}
};

1035.不相交的线 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i - 1 的nums1 以及 0 ~ j - 1 的nums2 最长不相交的线為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    不相同的話需要看之前的序列有沒有重複,之前包括兩個方面,縱向與橫向關係,要取最大的

    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

    相同的時候,因為之前的數都考慮過縱向與橫向的關係,可以直接從左上角跟重複子序列一樣

    dp[i][j] = dp[i - 1][j - 1] + 1;

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));for(int i = 1; i < nums1.size() + 1; i++) {for(int j = 1; j < nums2.size() + 1; j++) {if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return dp[nums1.size()][nums2.size()];}
};

53. 最大子序和 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i] 代表 i 之前包含i 的number[i] 結尾的最大子序和是多少

  2. 遞推公式

    當前的数加上前面的數比較大還是當前的數比較大,取大的。

    dp[i] = max(dp[i - 1] + nums[i], nums[i])

    if dp [i] > result 更新result

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    將數組初始化為最小值,以及result = nums[0]

  4. 確定遍歷順序

    0 到 i 因為需要前面的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int maxSubArray(vector<int>& nums) {vector<int> dp (nums.size() + 1, INT_MIN);int result = nums[0];dp[0] = nums[0];for(int i = 1; i < nums.size(); i++ ) {dp[i] = max(dp[i - 1] + nums[i], nums[i]);if(dp[i] > result) result = dp[i];}return result;}
};

總結

自己实现过程中遇到哪些困难

一開始對於最長公共子序列不太了解,但看完講解後,其實就是在重複子序列的基礎上考慮橫向與縱向的關係,以及最大子序和整體很像最長連續子序列,只是思考上需要進行轉換﹐整體而言,今天題目主要是思路上需要做一些改變,不然很容易繞進去。

今日收获,记录一下自己的学习时长

今天大概學習了2hr,整體是很充實的,尤其理解最長公共子序列,在想法上接續到的二題不相交的線就會非常清晰。

相關資料

● 今日学习的文章链接和视频链接

1143.最长公共子序列

视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili

https://programmercarl.com/1143.最长公共子序列.html

1035.不相交的线

视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili

https://programmercarl.com/1035.不相交的线.html

53. 最大子序和

视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili

https://programmercarl.com/0053.最大子序和(动态规划).html

这篇关于代碼隨想錄算法訓練營|第五十五天|1143.最长公共子序列、1035.不相交的线、53. 最大子序和。刷题心得(c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/318690

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

nodejs打包作为公共包使用的完整流程

《nodejs打包作为公共包使用的完整流程》在Node.js项目中,打包和部署是发布应用的关键步骤,:本文主要介绍nodejs打包作为公共包使用的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言一、前置准备二、创建与编码三、一键构建四、本地“白嫖”测试(可选)五、发布公共包六、常见踩坑提醒

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则