简单四招,快速提升数据洞察力

2023-10-31 08:50

本文主要是介绍简单四招,快速提升数据洞察力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很多同学抱怨:每天对着大堆数字,却看不出个名堂。反而有些做业务的人,看几个数字就能马上做出准确判断。咋回事!看着数据没有感觉,是缺少数据洞察力的表现。数据洞察力和操作工具没有关系,完全是一种思维习惯。

建立起来以后,不单单对工作有帮助,在生活中用处也很大,今天我们系统讲解下。

01

感受下啥叫洞察力

数字本身没有啥含义,数字+业务场景,才有了具体业务含义(如下图):

                           

注意,上图的小帅哥会暴走,并不是因为姑娘180身高,而是因为姑娘180把他得太矮了(且因此受过嘲讽)。“比”才是问题的关键。所以数据本身不形成判断,数据+标准才能形成判断。想读懂数据的含义,一定得看具体业务场景下,业务判断的标准是什么(如下图)。

n 有了数据、业务场景、判断标准,我们才能形成基本的数据洞察。这三者缺一不可。

n 少了数据,就会陷入:“我看到一个黑苹果,所以全天下苹果都是黑色的”这种窘境。

n 少了业务场景,就会出现:“一个女人十个月生娃,十个女人一个月就能生出来吧”这种糗事。

n 少了判断标准,就会鸡同鸭讲,大家扯了半天,发现说的“好/坏”根本不是一类。

  

02

培养洞察力的基本思路

既然洞察力来自数据、业务场景、判断标准的组合,培养洞察力,也是从这三个方向出发,包括:

1、遇事找数据

2、细致了解业务场景

3、清晰判断标准

4、积累特定场景下,数据判断的结论

5、在新场景中使用结论,检验效果

6、持续积累正确结论,修正错误结论

这一段话看起来很官方,可实际操作起来非常简单,并且我们每个人、每天都在实践。就比如找对象,懵懂的小男生都是挑剔热巴太胖、幂幂头秃,幻想自己找个仙女下凡。可真自己约会相亲追过几个女生,就发现“哦,原来现实中找个美女那么难呀!”

 

然后真找个“美女”相处一段时间,就发现比起长相,性格、爱好、生活能力、工作能力哪个都更重要。半夜,小哥一个人独自抽着烟,对着月亮,思考:“为毛我要花钱花力气请个姑奶奶回来伺候,我欠抽吗!”的时候,他的洞察力就有了质的飞跃。即使以后再看到漂亮小姑娘,他也会立即明白:这不是我的菜!

 

在现实生活中,制约洞察力的关键,往往是数据。因为生活中信息不对称问题严重,收集数据的难度太高,还要付出时间、金钱甚至前途、未来这种高额成本。

所以在生活中,我们常采用的是有限理性的策略。在可行范围内,尽量用少的数据做决策。或者干脆采用跟随策略,跟着那些比我们优秀的人混。但在企业里,则是完全不同的另一幅场景。

03

培养数据洞察力的难点

在企业工作中,培养数据洞察力最大的难点,是数据、业务场景、标准三者是相互分离的。

n 做数据分析的同学们不了解业务场景,只能对着数据瞎猜;

n 业务部门的人自己稀里糊涂,或者各怀鬼胎,故意扭曲判断标准;

n 对数据重视度不够,基础数据采集不全,遇到事都喜欢讲个案,不看数据全貌;

   

这些糟糕状况,都会导致做数据分析的同学们很难积累经验。

于是我们常常发现,企业里最有洞察力的人往往是老板。因为在老板那里这三者是透明的,所以即使不操作基础数据,他老人家也能明察秋毫。

但这对数据分析师可不是件好事。因为老板还等着我们给意见呢,事事都让老板跑在我们前边,会引发不满的。所以做数据的同学们还是得自己锻炼下洞察力。

04

培养数据洞察力的步骤

很多同学一说要提升洞察力,最喜欢干这三件事:

n 找《XX行业2020-2025全景洞察报告(重磅深度!)》

n 找XX行业数据指标体系思维导图,挑个最密密麻麻的保存在D盘-干货文件夹

n 加各种数据分析群,问:“有没有牛X的数据分析报告看看,有洞察那种,发来看看”

这三种方法完全没用。这就像一个想谈恋爱的小伙,每天在网上看美女图片一样,自己不动手练,不具体思考,是不可能提升洞察力的。永远不动,永远不会。得想办法自己动手才行。而且往往这些东西内容太多,最后保存在D盘的玩意,你也永远不会看。所以最好从一个具体小点出发。

▌第一步:从一个场景一个指标开始

做数据的同学,优势在于手上有数据,可以随时查。劣势在于不了解业务场景。因此把数据结合到业务场景中,是破题的关键。最好找一个自己熟悉的业务,有好朋友的部门入手。从理解结果指标开始(如下图)。

▌第二步:从极值到中间值

理解了指标业务含义,想要形成判断,可以从白犀牛开始——先看指标极大、极小值的时候。这些情况是什么场景,发生什么问题,有什么应对。

有了对极值的了解,就行掌握基础的判断标准,也能积累分析假设和分析逻辑。当遇到没有那么极端的情况时,可以顺着已经积累的分析逻辑去理解。实在解读不了,也可以选择再观察观察,看看数据往哪个极端方向发展(如下图)。

 

▌第三步:从静态到动态

当我们对静态场景积累的足够的洞察的时候,就能解读动态场景。本质上,动态场景只是一系列静态场景的合集。要额外提醒的是:一个业务变化往往有规律性。一个连续的规律,本身是具有业务含义的。积累周期形态的规律,可以从点到线,提升洞察能力。

 

▌第四步:从单指标到多指标

对单指标有了洞察积累,可以往多指标扩展,掌握了结果指标的判断,可以联系过程指标一起看。注意:多指标不是单指标的堆积,拼在一起的时候,也不是每个指标越多越好的。多指标组合时,在特定业务场景下会形成特定的形态,基于形态的解读能做出更准确的判断(如下图)。

 

掌握了基础形态,后续还能持续观察形态变化,积累更多经验,这样就慢慢能由简入繁,越来越多积累经验,积累多了自然能举一反三了。

 

要注意的是,换个行业,换个公司,换个产品,换个发展阶段,具体场景都会变化。所以企图追求“万古不变的数据分析真理”,只会让自己在玄学道路上越走越远。想提升洞察力,就多多积累具体场景碎片,提升具体分析能力。具体问题,具体分析,这句话永远不过时。

 

然而有些同学会问:本篇讲的更多是如何读懂数据,如果是基于数据做分析呢?该怎么提升?分析能力是个很宏大的话题,如果大家感兴趣,本篇集齐60在看。下一篇我们从源头开始,先讲《如何梳理复杂问题》,敬请期待哦。

原创精选推荐:

想跟陈老师一起,解决你的数据分析难题,提升数据分析能力?学习陈老师本人的《商业分析全攻略》视频课程,加入学员群,和陈老师一对一讨论,让陈老师手把手教你提升分析能力。

《商业分析全攻略》

长按扫描二维码
了解陈老师的视频课程

还可加入学员群

享受陈老师一对一咨询服务

点击左下角“阅读原文”听陈老师讲课

这篇关于简单四招,快速提升数据洞察力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314175

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查