【机器学习】逻辑斯谛回归模型实现

2023-10-31 08:30

本文主要是介绍【机器学习】逻辑斯谛回归模型实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 数据准备
  • 逻辑斯谛回归模型
  • 模型参数估计
  • 总结
  • 参考


数据准备

本文实现的是二项逻辑斯谛回归模型,因此使用的是处理过后的两类别数据 mnist_binary.csv,表中对原手写数据中0~4取作负类 -1,将5~9取作正类 +1。

另根据逻辑斯谛回归模型按条件概率分布定义:
P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P(Y=1|x)=\frac{exp(w\cdot x)}{1 + exp(w\cdot x)} P(Y=1∣x)=1+exp(wx)exp(wx)
P ( Y = 0 ∣ x ) = 1 1 + e x p ( w ⋅ x ) P(Y=0|x)=\frac{1}{1 + exp(w\cdot x)} P(Y=0∣x)=1+exp(wx)1

Y的取值应为0,1,因此需要将表中的-1类转换为0后再进行训练;此外由于要计算指数函数,特征取值过多会导致指数函数计算过程中的溢出,因此还需要将图像数据进行二值化操作。此部分直接在代码中完成,就不生成相应的数据集了。


逻辑斯谛回归模型

上面提到的逻辑斯谛回归模型的条件概率分布定义,可以看作是模型将线性函数 w ⋅ x w\cdot x wx通过其定义式转换为概率表现形式:
P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P(Y=1|x)=\frac{exp(w\cdot x)}{1 + exp(w\cdot x)} P(Y=1∣x)=1+exp(wx)exp(wx)

上式中表示事情发生的概率,在线性函数趋近于无穷大时,概率值越接近于1;线性函数趋近于负无穷时,概率值就接近于0;函数图像如下所示,模型的临界点在线性函数为零时,条件概率值为0.5。
逻辑斯谛

逻辑斯谛回归模型也可以推广至多分类,见总结部分。


模型参数估计

设上述逻辑斯谛回归模型可改写为如下格式:

P ( Y = 1 ∣ x ) = π ( x ) , P ( Y = 0 ∣ x ) = 1 − π ( x ) P(Y=1|x)=\pi(x),P(Y=0|x)=1-\pi(x) P(Y=1∣x)=π(x)P(Y=0∣x)=1π(x)

其似然函数为:

∏ i = 1 N [ π ( x i ) ] y i [ 1 − π ( x i ) ] 1 − y i \prod_{i=1}^{N}[\pi(x_i)]^{y_i}[1-\pi(x_i)]^{1-y_i} i=1N[π(xi)]yi[1π(xi)]1yi

对数似然函数:
L ( w ) = ∑ i = 1 N [ y i l o g π ( x i ) + ( 1 − y i ) l o g ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i l o g π ( x i ) 1 − π ( x i ) + l o g ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i ( w ⋅ x i ) − l o g ( 1 + e x p ( w ⋅ x i ) ) ] = y i ( w ⋅ x ) − l o g ( 1 + e x p ( w ⋅ x ) ) \begin{aligned} L(w) &= \sum_{i=1}^N[y_ilog\pi(x_i) + (1 - y_i)log(1 - \pi(x_i))] \\ &=\sum_{i=1}^N[y_ilog\frac{\pi(x_i)}{1 - \pi(x_i)} + log(1 - \pi(x_i))] \\ &=\sum_{i=1}^N[y_i(w\cdot x_i) - log(1 + exp(w\cdot x_i))] \\ &=y_i(w\cdot x) - log(1+exp(w\cdot x)) \end{aligned} L(w)=i=1N[yilogπ(xi)+(1yi)log(1π(xi))]=i=1N[yilog1π(xi)π(xi)+log(1π(xi))]=i=1N[yi(wxi)log(1+exp(wxi))]=yi(wx)log(1+exp(wx))

利用随机梯度下降方法优化算法,以向量形式对权重进行求导:
∂ L ( w ) ∂ w = y i x − x ⋅ e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) = x [ y i − e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) ] \begin{aligned} \frac{\partial L(w)}{\partial w} &= y_ix - \frac{x\cdot exp(w\cdot x)}{1+exp(w\cdot x)} \\ &=x[y_i - \frac{exp(w\cdot x)}{1 + exp(w\cdot x)}] \end{aligned} wL(w)=yix1+exp(wx)xexp(wx)=x[yi1+exp(wx)exp(wx)]

每次迭代过程中更新权重参数:

w = w + α ∂ L ( w ) ∂ w w = w + \alpha\frac{\partial L(w)}{\partial w} w=w+αwL(w)


根据上述算法步骤,可以发现基于随机梯度下降法的二项逻辑斯谛回归和基于梯度下降法的感知机模型学习算法流程基本一致,区别在于参数步骤的更新方式。另外在判别过程中:感知机采用符号函数Sgin,逻辑斯谛回归采用逻辑斯谛分布Sigmoid进行计算,可参考感知机模型学习原始算法。

具体实现代码如下:

# @Author: phd
# @Date: 2019-08-18
# @Site: github.com/phdsky
# @Description: NULLimport time
import logging
import numpy as np
import pandas as pdfrom sklearn.model_selection import train_test_split
from sklearn.preprocessing import Binarizerdef log(func):def wrapper(*args, **kwargs):start_time = time.time()ret = func(*args, **kwargs)end_time = time.time()logging.debug('%s() cost %s seconds' % (func.__name__, end_time - start_time))return retreturn wrapperdef calc_accuracy(y_pred, y_truth):assert len(y_pred) == len(y_truth)n = len(y_pred)hit_count = 0for i in range(0, n):if y_pred[i] == y_truth[i]:hit_count += 1print("Predicting accuracy %f" % (hit_count / n))class LogisticRegression(object):def __init__(self, w, b, learning_rate, max_epoch, learning_period, learning_ratio):self.weight = wself.bias = bself.lr_rate = learning_rateself.max_epoch = max_epochself.lr_period = learning_periodself.lr_ratio = learning_ratiodef calculate(self, feature):# wx = sum([self.weight[j] * feature[j] for j in range(len(self.weight))])wx = np.dot(self.weight.transpose(), feature)exp_wx = np.exp(wx)predicted = 0 if (1 / (1 + exp_wx)) > 0.5 else 1return predicted, exp_wx@logdef train(self, X_train, y_train):# Fuse weight with biasself.weight = np.full((len(X_train[0]), 1), self.weight, dtype=float)self.weight = np.row_stack((self.weight, self.bias))epoch = 0while epoch < self.max_epoch:hit_count = 0data_count = len(X_train)for i in range(data_count):feature = X_train[i].reshape([len(X_train[i]), 1])feature = np.row_stack((feature, 1))label = y_train[i]predicted, exp_wx = self.calculate(feature)if predicted == label:hit_count += 1continue# for k in range(len(self.weight)):#     self.weight[k] += self.lr_rate * (label*feature[k] - ((feature[k] * exp_wx) / (1 + exp_wx)))self.weight += self.lr_rate * feature * (label - (exp_wx / (1 + exp_wx)))epoch += 1print("\rEpoch %d, lr_rate=%f, Acc = %f" % (epoch, self.lr_rate, hit_count / data_count), end='')# Decay learning rateif epoch % self.lr_period == 0:self.lr_rate /= self.lr_ratio# Stop trainingif self.lr_rate <= 1e-6:print("\nLearning rate is too low, Early stopping...\n")break@logdef predict(self, X_test):n = len(X_test)predict_label = np.full(n, -1)for i in range(0, n):to_predict = X_test[i].reshape([len(X_test[i]), 1])vec_predict = np.row_stack((to_predict, 1))predict_label[i], _ = self.calculate(vec_predict)return predict_labelif __name__ == "__main__":logger = logging.getLogger()logger.setLevel(logging.DEBUG)mnist_data = pd.read_csv("../data/mnist_binary.csv")mnist_values = mnist_data.valuesimages = mnist_values[::, 1::]labels = mnist_values[::, 0]X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.33, random_state=42)# Handle all -1 in y_train to 0y_train = y_train * (y_train == 1)y_test = y_test * (y_test == 1)# Binary the image to avoid predict_probability gets 0binarizer_train = Binarizer(threshold=127).fit(X_train)X_train_binary = binarizer_train.transform(X_train)binarizer_test = Binarizer(threshold=127).fit(X_test)X_test_binary = binarizer_test.transform(X_test)lr = LogisticRegression(w=0, b=1, learning_rate=0.001, max_epoch=100,learning_period=10, learning_ratio=3)print("Logistic regression training...")lr.train(X_train=X_train_binary, y_train=y_train)print("\nTraining done...")print("Testing on %d samples..." % len(X_test))y_predicted = lr.predict(X_test=X_test_binary)calc_accuracy(y_pred=y_predicted, y_truth=y_test)

代码输出

/Users/phd/Softwares/anaconda3/bin/python /Users/phd/Desktop/ML/logistic_regression/logistic_regression.py
Logistic regression training...
Epoch 70, lr_rate=0.000001, Acc = 0.818479
Learning rate is too low, Early stopping...Training done...
Testing on 13860 samples...
DEBUG:root:train() cost 38.08758902549744 seconds
Predicting accuracy 0.831097
DEBUG:root:predict() cost 0.2131938934326172 secondsProcess finished with exit code 0

从结果可以看出,在图像二值化后逻辑斯谛算法的训练和测试精度都在80%+,算法效果较好;预测结果优于直接使用原始数据的感知机模型。


总结

  1. 逻辑斯谛回归模型是一种分类模型
  2. 逻辑斯谛回归是由输入线性函数表示的输出对数几率模型;其模型定义由如下条件概率分布表示:(将二项推广为多项模型)

{ P ( Y = k ∣ x ) = e x p ( w k ⋅ x ) 1 + ∑ k = 1 K − 1 e x p ( w k ⋅ x ) , k = 1 , 2 , . . . , K − 1 P ( Y = K ∣ x ) = 1 1 + ∑ k = 1 K − 1 e x p ( w k ⋅ x ) \left\{ \begin{aligned} P(Y=k|x) &= \frac{exp(w_k\cdot x)}{1 + \sum\limits_{k=1}^{K-1}exp(w_k\cdot x)}, k=1,2,...,K-1 \\ P(Y=K|x) &= \frac{1}{1 + \sum\limits_{k=1}^{K-1}exp(w_k\cdot x)} \end{aligned} \right. P(Y=kx)P(Y=Kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,...,K1=1+k=1K1exp(wkx)1


参考

  1. 《统计学习方法》

这篇关于【机器学习】逻辑斯谛回归模型实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314073

相关文章

Qt 设置软件版本信息的实现

《Qt设置软件版本信息的实现》本文介绍了Qt项目中设置版本信息的三种常用方法,包括.pro文件和version.rc配置、CMakeLists.txt与version.h.in结合,具有一定的参考... 目录在运行程序期间设置版本信息可以参考VS在 QT 中设置软件版本信息的几种方法方法一:通过 .pro

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求