基于Redisson实现分布式系统下的接口限流

2025-08-05 21:50

本文主要是介绍基于Redisson实现分布式系统下的接口限流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《基于Redisson实现分布式系统下的接口限流》在高并发场景下,接口限流是保障系统稳定性的重要手段,本文将介绍利用Redisson结合Redis实现分布式环境下的接口限流,具有一定的参考价值,感兴趣...

在高并发场景下,接口限流是保障系统稳定性的重要手段。常见的限流算法有漏桶算法、令牌桶算法等,而单机模式的限流方案在分布式集群环境下往往失效。本文将介绍如何利用 Redisson 结合 Redis 实现分布式环境下的接口限流,确保集群中所有节点的流量控制保持一致。

分布式限流的核心挑战

在单机系统中,我们可以通过本地缓存(如 Guava 的 RateLimiter)实现限流,但在分布式集群环境下,这种方案会遇到两个核心问题:

  • 集群节点间的限流状态不共享,导致整体流量超过预期阈值
  • 无法保证同一用户 / IP 的请求在不同节点上被统一限制

因此,分布式限流需要一个「中心化的状态存储」来记录流量数据,而 Redis 凭借其高并发特性和分布式特性,成为了理想的选择。

基于 Redisson 的分布式限流设计思路

核心原理是通过 Redis 记录每个用户对接口的访问频率,利用分布式锁实现并发控制,具体设计如下:

  1. 唯一标识用户与接口 为了避免限制 A 用户时影响 B 用户,需要为每个用户 + 接口组合生成唯一的「限流键」。

    一般为用户:使用 token + 接口路径 +pJPwB用户的id

  2. 基于 Redis 的访问频率记录 每次请求到来时,通过 Redisson 操作 Redis 记录访问时间,并检查单位时间内的访问次数是否超过阈值。

  3. AOP 无侵入式拦截 通过自定义注解 + Spring AOP 拦截需要限流的接口,在请求到达时执行限流逻辑,不侵入业务代码。

  4. 自动过期的限流状态 为 Redis 中的限流键设置过期时间,避免长期存储无效数据,同时确保超过限制时间后自动允许用户再次访问。

实现步骤

引入依赖

pom.XML 中添加 Redisson 和 AOP 依赖

<!-- Redisson 分布式工具 -->
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson-spring-boot-starter</artifactId>
    <version>3.23.3</version>
</dependency>

<!-- Spring AOP -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-aop</artifactId>
</dependency>

定义限流注解

创建 @NoRepeatSubmit 注解,用于标记需要限流的接口,并支持自定义限流参数:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface NoRepeatSubmit {

    /**
     * 设置请求锁定时间(秒)
     */
    int lockTime() default 5;
}

实现限流切面

通过 AOP 拦截 @NoRepeatSubmit 注解的方法,使用 Rhttp://www.chinasem.cnedisson 操作 Redis 实现限流逻辑:

ASPect
@Component
public class RepeatSubmitAspect {

    private static final Logger log = LoggerFactory.getLogger(RepeatSubmitAspect.class);

    @Resource
    private RedissonClient redissonClient;

    @Pointcut("@annotation(com.example.demo.config.NoRepeatSubmit)")
    public void pointCut() {
    }

    @Around("pointCut()")
    public Object around(ProceedingJoinPoint pjp) throws Throwable {
        MethodSignature signature = (MethodSignature) pjp.getSignature();
        Method method = signature.getMethod();
        NoRepeatSubmit annotation = method.getAnnotation(NoRepeatSubmit.class);

        ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
        if (attributes == null) {
            throw new IllegalArgumentException("无法获取请求信息");
        }

        HttpServletRequest request = attributes.getRequest();
       www.chinasem.cn String token = request.getHeader("token");
        String path = request.getServletPath();

        if (token == null || token.isEmpty()) {
            throw new IllegalArgumentException("缺少token请求头");
        }

        // 使用token+path作为锁的key
        String key = "repeat_submit:" + token + ":" + path;
        RLock lock = redissonClient.getLock(key);

        // 尝试获取锁,等待0秒,自动释放时间由注解指定
        javascriptboolean isSuccess = false;
            isSuccess = lock.tryLock(0, annotation.lockTime(), TimeUnit.SECONDS);
            if (isSuccess) {
                log.info("获取锁成功: {}", key);
                // 执行目标方法
                return pjp.proceed();
            } else {
                log.info("重复请求,获取锁失败: {}", key);
                return Result.fail("请勿重复提交请求");
            }
    }
}

测试

@RestController
@RequestMapping("/api/order")
public class OrderController {

    @PostMapping("/create")
    @NoRepeatSubmit(lockTime = 10) // 设置5秒内不允许重复提交
    public Result createOrder() {
        // 模拟订单创建过程
        try {
            Thread.sleep(2000); // 模拟业务处理耗时2秒
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        return Result.success("订单创建成功");
    }
}

基于Redisson实现分布式系统下的接口限流

限制之后

基于Redisson实现分布式系统下的接口限流

这里还可以增加更多的逻辑,比如限制次数等等。

核心逻辑说明

  1. 用户唯一标识生成 通过 getUniqueUserKey 方法获取用户标识:已登录用户用 token,未登录用户用 IP,确保不同用户的限流互不干扰。
  2. 限流键设计 限流键格式为 rate_limit:用户标识:接口路径,例如 rate_limit:test_token:/api/order/submit,精确控制「用户 + 接口」的访问频率。
  3. 分布式锁的作用 由于 Redis 的 INCR 操作虽然原子,但在高并发下可能出现「读取 - 判断 - 更新」的竞态条件,因此通过 Redisson 分布式锁确保计数逻辑的原子性。
  4. 自动过期机制 每个限流键都设置了与时间窗口相同的过期时间,避免 Redis 中存储大量无效数据,同时确保时间窗口结束后自动重置计数。 由于 Redis 的 INCR 操作虽然原子,但在高并发下可能出现「读取 - 判断 - 更新」的竞态条件,因此通过 Redisson 分布式锁确保计数逻辑的原子性。
  5. 自动过期机制 每个限流键都设置了与时间窗口相同的过期时间,避免 Redis 中存储大量无效数据,同时确保时间窗口结束后自动重置计数。

到此这篇关于基于Redisson实现分布式系统下的接口限流的文章就介绍到这了pJPwB,更多相关Redisson接口限流内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)! 

这篇关于基于Redisson实现分布式系统下的接口限流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1155608

相关文章

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详