机器学习之分类算法,mnist手写体识别的python实战(一)

2023-10-30 21:00

本文主要是介绍机器学习之分类算法,mnist手写体识别的python实战(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天我们来学习机器学习之分类算法,MNIST手写体识别的python实战。

目录

  • 一、MNIST数据集
  • 二、python代码实战
    • 1.查看MNIST数据
    • 2.分类算法
      • 2.1训练一个二分类器
      • 2.2评估分类器
        • 使用交叉验证测量精度
        • 混淆矩阵
      • 2.3精度和召回率
        • 精度和召回率权衡
      • 2.4ROC曲线
      • 2.5随机森林分类器
      • 2.6多元分类器
        • 错误分析

一、MNIST数据集

首先来介绍一下什么是MNIST。
这是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。这个数据集被广为使用,因此也被称作是机器学习领域的“Hello World”:但凡有人想到了一个新的分类算法,都会想看看在MNIST上的执行结果。因此只要是学习机器学习的人,早晚都要面对MNIST。

二、python代码实战

1.查看MNIST数据

首先导入库

# 使用sklearn的函数来获取MNIST数据集
from sklearn.datasets import fetch_openml
import numpy as np
import os
# to make this notebook's output stable across runs
np.random.seed(42)
# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
# 为了显示中文
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

通过sklearn函数获取MNIST数据

# 耗时巨大
def sort_by_target(mnist):reorder_train=np.array(sorted([(target,i) for i, target in enumerate(mnist.target[:60000])]))[:,1]reorder_test=np.array(sorted([(target,i) for i, target in enumerate(mnist.target[60000:])]))[:,1]mnist.data[:60000]=mnist.data[reorder_train]mnist.target[:60000]=mnist.target[reorder_train]mnist.data[60000:]=mnist.data[reorder_test+60000]mnist.target[60000:]=mnist.target[reorder_test+60000]
mnist=fetch_openml('mnist_784',version=1,cache=True)
mnist.target=mnist.target.astype(np.int8)
sort_by_target(mnist)

然后对数据进行排序

mnist["data"], mnist["target"]

在这里插入图片描述
查看MNIST数据集的特征
在这里插入图片描述
展示单张图片

# 展示图片
def plot_digit(data):image = data.reshape(28, 28)plt.imshow(image, cmap = mpl.cm.binary,interpolation="nearest")plt.axis("off")
some_digit = X[38000]
plot_digit(X[38000].reshape(28,28))

通过修改图片上所指的值修改想要展示的图片位置。
在这里插入图片描述
展示10x10的图片集合
代码如下:

# 更好看的图片展示
def plot_digits(instances,images_per_row=10,**options):size=28# 每一行有一个image_pre_row=min(len(instances),images_per_row)images=[instances.reshape(size,size) for instances in instances]
#     有几行n_rows=(len(instances)-1) // image_pre_row+1row_images=[]n_empty=n_rows*image_pre_row-len(instances)images.append(np.zeros((size,size*n_empty)))for row in range(n_rows):# 每一次添加一行rimages=images[row*image_pre_row:(row+1)*image_pre_row]# 对添加的每一行的额图片左右连接row_images.append(np.concatenate(rimages,axis=1))# 对添加的每一列图片 上下连接image=np.concatenate(row_images,axis=0)plt.imshow(image,cmap=mpl.cm.binary,**options)plt.axis("off")
plt.figure(figsize=(9,9))
example_images=np.r_[X[:12000:600],X[13000:30600:600],X[30600:60000:590]]
plot_digits(example_images,images_per_row=10)
plt.show()

在这里插入图片描述
这些代码都不是很重要,能够理解其中的含义最好,不能理解也可以当做一个工具来使用。
前面的一些代码只是让我们进一步了解MNIST,接下来开始使用MNIST数据集进行分类实战。

2.分类算法

首先创建一个测试集,并把其放在一边。

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

同样,我们还需要对训练集进行洗牌,这样可以保证交叉验证的时候,所有的折叠都差不多。此外,有些机器学习算法对训练示例的循序敏感,如果连续输入许多相似的实例,可能导致执行的性能不佳。给数据洗牌,正是为了确保这种情况不会发生。

import numpy as npshuffer_index=np.random.permutation(60000)
X_train,y_train=X_train[shuffer_index],y_train[shuffer_index]

2.1训练一个二分类器

现在,我们先简化问题,只尝试识别一个数字,比如数字5,那么这个"数字5检测器",就是一个二分类器的例子,它只能区分两个类别:5和非5。先为此分类任务创建目录标量。

y_train_5=(y_train==5)
y_test_5=(y_test==5)

这篇关于机器学习之分类算法,mnist手写体识别的python实战(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310578

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: