机器学习之分类算法,mnist手写体识别的python实战(一)

2023-10-30 21:00

本文主要是介绍机器学习之分类算法,mnist手写体识别的python实战(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天我们来学习机器学习之分类算法,MNIST手写体识别的python实战。

目录

  • 一、MNIST数据集
  • 二、python代码实战
    • 1.查看MNIST数据
    • 2.分类算法
      • 2.1训练一个二分类器
      • 2.2评估分类器
        • 使用交叉验证测量精度
        • 混淆矩阵
      • 2.3精度和召回率
        • 精度和召回率权衡
      • 2.4ROC曲线
      • 2.5随机森林分类器
      • 2.6多元分类器
        • 错误分析

一、MNIST数据集

首先来介绍一下什么是MNIST。
这是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。这个数据集被广为使用,因此也被称作是机器学习领域的“Hello World”:但凡有人想到了一个新的分类算法,都会想看看在MNIST上的执行结果。因此只要是学习机器学习的人,早晚都要面对MNIST。

二、python代码实战

1.查看MNIST数据

首先导入库

# 使用sklearn的函数来获取MNIST数据集
from sklearn.datasets import fetch_openml
import numpy as np
import os
# to make this notebook's output stable across runs
np.random.seed(42)
# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
# 为了显示中文
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

通过sklearn函数获取MNIST数据

# 耗时巨大
def sort_by_target(mnist):reorder_train=np.array(sorted([(target,i) for i, target in enumerate(mnist.target[:60000])]))[:,1]reorder_test=np.array(sorted([(target,i) for i, target in enumerate(mnist.target[60000:])]))[:,1]mnist.data[:60000]=mnist.data[reorder_train]mnist.target[:60000]=mnist.target[reorder_train]mnist.data[60000:]=mnist.data[reorder_test+60000]mnist.target[60000:]=mnist.target[reorder_test+60000]
mnist=fetch_openml('mnist_784',version=1,cache=True)
mnist.target=mnist.target.astype(np.int8)
sort_by_target(mnist)

然后对数据进行排序

mnist["data"], mnist["target"]

在这里插入图片描述
查看MNIST数据集的特征
在这里插入图片描述
展示单张图片

# 展示图片
def plot_digit(data):image = data.reshape(28, 28)plt.imshow(image, cmap = mpl.cm.binary,interpolation="nearest")plt.axis("off")
some_digit = X[38000]
plot_digit(X[38000].reshape(28,28))

通过修改图片上所指的值修改想要展示的图片位置。
在这里插入图片描述
展示10x10的图片集合
代码如下:

# 更好看的图片展示
def plot_digits(instances,images_per_row=10,**options):size=28# 每一行有一个image_pre_row=min(len(instances),images_per_row)images=[instances.reshape(size,size) for instances in instances]
#     有几行n_rows=(len(instances)-1) // image_pre_row+1row_images=[]n_empty=n_rows*image_pre_row-len(instances)images.append(np.zeros((size,size*n_empty)))for row in range(n_rows):# 每一次添加一行rimages=images[row*image_pre_row:(row+1)*image_pre_row]# 对添加的每一行的额图片左右连接row_images.append(np.concatenate(rimages,axis=1))# 对添加的每一列图片 上下连接image=np.concatenate(row_images,axis=0)plt.imshow(image,cmap=mpl.cm.binary,**options)plt.axis("off")
plt.figure(figsize=(9,9))
example_images=np.r_[X[:12000:600],X[13000:30600:600],X[30600:60000:590]]
plot_digits(example_images,images_per_row=10)
plt.show()

在这里插入图片描述
这些代码都不是很重要,能够理解其中的含义最好,不能理解也可以当做一个工具来使用。
前面的一些代码只是让我们进一步了解MNIST,接下来开始使用MNIST数据集进行分类实战。

2.分类算法

首先创建一个测试集,并把其放在一边。

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

同样,我们还需要对训练集进行洗牌,这样可以保证交叉验证的时候,所有的折叠都差不多。此外,有些机器学习算法对训练示例的循序敏感,如果连续输入许多相似的实例,可能导致执行的性能不佳。给数据洗牌,正是为了确保这种情况不会发生。

import numpy as npshuffer_index=np.random.permutation(60000)
X_train,y_train=X_train[shuffer_index],y_train[shuffer_index]

2.1训练一个二分类器

现在,我们先简化问题,只尝试识别一个数字,比如数字5,那么这个"数字5检测器",就是一个二分类器的例子,它只能区分两个类别:5和非5。先为此分类任务创建目录标量。

y_train_5=(y_train==5)
y_test_5=(y_test==5)

这篇关于机器学习之分类算法,mnist手写体识别的python实战(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310578

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.